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Abstract

The US suffers from large regional disparities in employment rates which have

persisted for many decades. It has been argued that foreign migration offers a rem-

edy: it “greases the wheels” of the labor market by accelerating the adjustment of

local population. Remarkably, I find that new migrants account for 30 to 60 percent

of the average population response to local demand shocks since 1960. However,

population is not significantly more responsive in locations better supplied by new

migrants: the larger foreign contribution is almost entirely offset by a reduced

contribution from internal mobility. This is fundamentally a story of “crowding

out”: I estimate that new foreign migrants to a commuting zone crowd out existing

US residents one-for-one. The magnitude of this effect is puzzling, and it may be

somewhat overstated by undercoverage of migrants in the census. Nevertheless, it

appears to conflict with much of the existing literature, and I attempt to explain

why. Methodologically, I offer tools to identify the local impact of immigration in

the context of local dynamics.

1 Introduction

The US suffers from large regional disparities in employment-population ratios (from

here on, “employment rates”) which have persisted for many decades (Kline and Moretti,

2013; Amior and Manning, 2018). Concern has grown about these inequities in light of

the Great Recession and a secular decline in manufacturing employment (Kroft and Pope,

2014; Acemoglu et al., 2016), whose impact has been heavily concentrated geographically

(Moretti, 2012; Autor, Dorn and Hanson, 2013). In principle, these disparities should

∗Hebrew University of Jerusalem, Mount Scopus, Jerusalem 91905, Israel; Centre for Economic Per-
formance, LSE. I am grateful to Alan Manning for his guidance, and to Christoph Albert, George Borjas,
David Card, Christian Dustmann, Ori Heffetz, Guy Michaels, Giovanni Peri, Jonathan Portes and Jan
Stuhler for helpful comments, as well as participants of the CEP (2015), RES (2016), OECD-CEPII
“Immigration in OECD Countries” (2017), GSE Summer Forum (2018), CEPR-EBRD (2018) and IZA
Annual Migration Meeting (2018) conferences, and seminars at IDC Herzliya, Bar Ilan, Hebrew Uni-
versity (Mount Scopus and Rehovot) and Bank of Israel. I also thank Jack DeWaard, Joe Grover, Kin
Koerber and Jordan Rappaport for sharing data.

1



be eliminated by regional mobility, but this has itself been in secular decline in recent

decades (Molloy, Smith and Wozniak, 2011; Dao, Furceri and Loungani, 2017; Kaplan

and Schulhofer-Wohl, 2017).

In the face of these challenges, it has famously been argued that foreign migration

offers a remedy. Borjas (2001) claims that new immigrants “grease the wheels” of the

labor market: given they have already incurred the fixed cost of moving, they are very

responsive to regional differences in economic opportunity - and therefore accelerate local

population adjustment.1 And in groundbreaking work on the Great Recession period,

Cadena and Kovak (2016) argue further that foreign-born workers (or at least low skilled

Mexicans) continue to “grease the wheels” even some years after arrival. In terms of

policy, if migrants are indeed regionally flexible, forcibly dispersing them within receiving

countries may actually hurt natives as well as the migrants themselves.2 Basso, Peri

and Rahman (2017) have extended the hypothesis beyond geography: they find that

immigration attenuates the impact of technical change on local skill differentials.

I revisit the original question of geographical adjustment using decadal US data span-

ning 722 commuting zones (CZs) and 50 years - and using an empirical model which

explicitly accounts for dynamic adjustment. Remarkably, I find that foreign migrants

(and specifically new arrivals) account for around half of the average population response

to local demand shocks. But in areas better supplied by new migrants, population growth

is not significantly larger nor more responsive to these shocks. I claim that foreign mi-

gration crowds out the contribution from internal mobility that would have materialized

in the counterfactual. This is not to say that natives gain little from the contribution

of foreign migration. As I argue below, undercoverage of unauthorized migrants in the

census may overstate the crowding out effect - and understate the foreign contribution to

adjustment. And in any case, conditional on the overall level of immigration, a regionally

flexible migrant workforce may save natives from incurring potentially steep moving costs

themselves. As Molloy, Smith and Wozniak (2017) suggest, this may in principle shed a

more positive light on the decline in regional mobility since the 1980s.

I underpin these results with a dynamic model of local labor market adjustment which

builds on Amior and Manning (2018). I define local equilibrium for a given population us-

ing a competitive Rosen-Roback framework (Rosen, 1979; Roback, 1982). Workers move

to higher-utility areas, but this process takes time; and new to this paper, I distinguish

between the contributions of foreign and internal migration. To the extent that foreign

1Borjas (1999), Card and Lewis (2007), Jaeger (2007), Kerr (2010), Cadena (2013, 2014), Basso, Peri
and Rahman (2017), Beerli, Indergand and Kunz (2017) and Albert and Monras (2018) offer additional
evidence that new migrants’ location decisions respond strongly to local economic conditions. The idea
of “greasing the wheels” is not limited to immigration: Dustmann, Schoenberg and Stuhler (2017) find
that older workers (who supply labor elastically) protect the employment of younger workers (who supply
labor inelastically) in the event of adverse shocks.

2Fasani, Frattini and Minale (2018) find adverse effects of such dispersal policies on the wages of
asylum seekers in Europe.
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inflows are responsive to local conditions, local utility differentials will be narrower at

any point in time. But this will discourage existing residents from themselves relocat-

ing over the path of adjustment. Crucially, as internal population flows become more

sensitive, their contribution to local adjustment will be increasingly (and in the limit,

fully) “crowded out”. In other words, foreign migration will only “grease the wheels” (i.e.

accelerate local population adjustment) if the wheels are not already greased.

The model yields an “error correction” specification, where decadal changes in log

population depend on contemporaneous changes in log employment and the lagged log

employment rate (the initial deviation from steady-state). Amior and Manning show the

employment rate can serve as a “sufficient statistic” for local economic opportunity, as

an alternative to the more common real consumption wage (which is notoriously difficult

to measure for detailed local geographies). This approach already has precedent in the

migration literature: Pischke and Velling (1997) control for lagged unemployment when

estimating local labor market effects. In an effort to exclude supply shocks, I instrument

the employment change and lagged employment rate with current and lagged Bartik

(1991) industry shift-shares. And new to this paper, I adjust local employment rates for

demographic composition: this is to account for heterogeneous preferences for leisure, not

least between natives and foreign-born individuals (see Borjas, 2016).

The model fits the data well. On average, population responds to the current employ-

ment change and lagged employment rate with elasticities of 0.75 and 0.55 respectively:

i.e. large but incomplete adjustment over one decade. Remarkably, new foreign migrants

(arriving within the decadal interval) account for over 30 per cent of the former effect and

close to 60 per cent of the latter - despite accounting for just 4 percent of the population.

Interestingly, this is partly explained by the well-documented preference of new migrants

to settle in large co-patriot communities. Conveniently, these communities are dispro-

portionately located in high-employment areas: itself a consequence of persistent local

demand shocks. Nevertheless, existing US residents also make a substantial contribution

to adjustment, and this is almost entirely due to natives. The latter result appears to

be at odds with Cadena and Kovak (2016): at least among the low educated, they find

that the local native population is inelastic. In Appendix H, I attempt to reconcile our

results: once I account for local dynamics, I do identify a large native response even in

their data.

To study the implications of foreign migration for overall population adjustment, I

exploit variation across space and time in the supply of new migrants - building on the

methodology of Cadena and Kovak (2016) and also Basso, Peri and Rahman (2017). I

identify the local supply using the migrant shift-share popularized by Altonji and Card

(1991) and Card (2001). This predicts the local foreign inflow by allocating new arrivals

from each origin country to CZs according to the initial spatial distribution of co-patriot

communities. Surprisingly, I cannot reject the hypothesis that population growth is no
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larger - and responds to shocks no faster - in CZs better supplied by new migrants. The

larger foreign contribution to adjustment in these areas is almost entirely offset by a

reduced contribution from internal mobility - and specifically from natives. Thus, unlike

Cadena and Kovak (2016), I do not find that foreign migrants smooth local employment

rates: neither those of natives, nor those of the migrants themselves.

This analysis of the impact of the migrant shift-share can be seen as “reduced form”:

it makes no claims on the underlying mechanisms. My “structural” interpretation is

that realized foreign inflows are crowding out internal reallocation. In the second part of

the paper, I impose this interpretation more explicitly, identifying the impact of realized

foreign inflows themselves - and now using the migrant shift-share as an instrument.

I estimate that each new foreign arrival to a CZ crowds out one existing US resident

(or more precisely, 1.1), with a standard error of just 0.13. Appendix E.4 shows the

effect is entirely driven by a reduction in internal inflows rather than larger outflows,

consistent with Dustmann, Schoenberg and Stuhler (2017) - and hence my preference for

the “crowding out” terminology over (the more typical) “displacement”. This analysis is

based on CZs; but in Appendix E.5, I cannot reject one-for-one crowd-out across US states

either. As Borjas, Freeman and Katz (1997) note, this result has broader methodological

implications: local estimates of the impact of immigration may then understate any

aggregate-level effect.

Of course, there are important threats to identifications. I do find substantial crowding

out effects in each individual decade, though they disappear in some cases when I remove

right hand side controls (both demand proxies and local climate). The importance of these

controls is to be expected, given the limitations of the migrant shift-share instrument. In

a world with persistent shocks or sluggish adjustment, it may be positively correlated with

local utility (Pischke and Velling, 1997; Borjas, 1999); and to the extent that these effects

are unobserved, this may bias the crowding out estimate towards zero. A related concern,

raised by Jaeger, Ruist and Stuhler (2018), is strong local persistence in the instrument

itself - which makes it difficult to disentangle the impact of current and historical foreign

inflows. But in principle, the lagged employment rate control should account for the

entire history of shocks (including past foreign inflows), and further exploration of the

dynamics suggests it is performing its function well. These concerns may alternatively be

addressed by exploiting well-defined natural experiments, but such experiments typically

restrict analysis to specific historical episodes. In contrast, my approach allows me to

study a more general setting, covering 50 years of US experience.

The magnitude of the crowding out effect is certainly puzzling. First, it is surprising

that population should adjust fully to labor supply shocks within one decade, given the

response to demand shocks is somewhat sluggish. And second, I find small but significant

effects of foreign inflows on local employment rates3: despite one-for-one crowding out,

3See also Smith (2012), Edo and Rapoport (2017) and Gould (forthcoming).
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the evidence does not point to full adjustment. How can this be interpreted? An “excess”

internal response to foreign inflows may be driven by natives’ distaste for migrant enclaves,

but this should put upward pressure on local employment rates - and I find the opposite.

Alternatively, it may be that migrants are more productive than natives (in the sense of

doing the same work for less), so local adjustment may be incomplete even under one-for-

one crowd-out. And finally, the crowding effect may be overstated due to undercoverage

of unauthorized migrants in the census.

Other studies have also identified substantial geographical crowd-out (e.g. Filer, 1992;

Frey, 1995; 1996; Borjas, Freeman and Katz, 1997; Hatton and Tani, 2005; Borjas, 2006),

though Peri and Sparber (2011) and Card and Peri (2016) have disputed Borjas’ (2006)

methodology. Monras (2015b) identifies a one-for-one effect following the short run surge

of Mexican migrants during the Peso crisis of 1995, but he finds much less crowding out

over longer horizons. In complementary work, Burstein et al. (2018) show that migrants

crowd out natives from employment in migrant-intensive non-tradable jobs, but this is

specifically a within-CZ effect. Dustmann, Schoenberg and Stuhler (2017) find that Czech

workers who were permitted to commute across the German border in the early 1990s

crowded out German residents one-for-one in local employment. The bulk of the effect

(about two thirds) materializes in local non-employment rather than population, though

this decomposition only relates to a three year horizon.

Still, the US literature has more typically gravitated to small negative or even pos-

itive effects on native population. See, for example, Butcher and Card (1991), Wright,

Ellis and Reibel (1997), Card and DiNardo (2000), Card (2001, 2005, 2009a), Card and

Lewis (2007), Cortes (2008), Boustan, Fishback and Kantor (2010), Wozniak and Murray

(2012), Hong and McLaren (2015), Edo and Rapoport (2017) and Piyapromdee (2017);

see Pischke and Velling (1997) for similar results for Germany, and Sanchis-Guarner

(2014) for Spain; and see Peri and Sparber (2011) and Lewis and Peri (2014) for recent

surveys. There are various possible theoretical explanations. One is that native-born

workers are relatively immobile geographically (Cadena and Kovak, 2016). Alternatively,

labor demand may adjust endogenously to foreign migration, whether through produc-

tion technology or migrants’ consumption: see Lewis (2011), Dustmann and Glitz (2015)

and Hong and McLaren (2015). And third, migrants and natives may be imperfect sub-

stitutes in production: see Card (2009b); Manacorda, Manning and Wadsworth (2012);

Ottaviano and Peri (2012). For example, Peri and Sparber (2009), D’Amuri and Peri

(2014) and Foged and Peri (2016) argue that natives have a comparative advantage in

communication-intensive tasks.

In the final part of the paper, I attempt to reconcile my crowding out results with the

existing literature. The seminal work has typically addressed the challenge of omitted

local effects by exploiting variation across skill groups within geographical areas (e.g.

Card and DiNardo, 2000; Card, 2001, 2005; Borjas, 2006; Cortes, 2008; Monras, 2015b).
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That is, they study the effect of skill-specific foreign inflows on local skill composition.

But small composition effects are not necessarily inconsistent with large geographical

crowd-out - for two reasons. First, these effects reflect not only differential internal

mobility, but also changes in the characteristics of local birth cohorts. Indeed, I find that

cohort effects have historically offset the impact of geographical crowd-out. And second,

as Card (2001) and Dustmann, Schoenberg and Stuhler (2016) point out, within-area

estimates do not account for the impact that new migrants exert outside their own skill

group - the importance of which depends on elasticities of substitution. This can be seen

in the sensitivity of my within-area estimates to the delineation of skill groups.

I set out my model in the following section, and Section 3 describes the data. I present

estimates of the population response to local employment shocks in Section 4, but I find

little evidence of local heterogeneity along the support of the migrant shift-share. This

is suggestive of crowding out effects, and I test for these more explicitly in Section 5

- exploiting the shift-share as an instrument. Finally, Section 6 offers estimates which

exploit variation within areas, based on a modified version of the model.

2 Model of local population adjustment

2.1 Local equilibrium conditional on population

I base my model on Amior and Manning (2018), but now distinguish between the con-

tributions of foreign and internal migration to population adjustment. The model has

two components: first, a characterization of local equilibrium conditional on population

(based on the classic Rosen-Roback framework); and second, dynamic equations describ-

ing how population flows to higher-utility areas. Once I have set out the model, I derive

the effect of a larger foreign supply of migrants on population adjustment. And I also

show how the question can be explicitly reformulated in terms of crowding out.

To ease the exposition, I make no distinction between the labor supplied by natives

and migrants in production. Of course, to the extent that they are imperfect substitutes,

the model will then overstate any impact of foreign migration on native outcomes. But in

line with the methodology of Beaudry, Green and Sand (2012), I do not impose any such

theoretical restrictions in the empirical estimation. Instead, I use various instruments to

identify the relationships described in the model, and I test the validity of the assumptions

ex post. As it happens, in the data, both foreign inflows and employment shocks have

remarkably similar effects on the (composition-adjusted) employment rates of natives and

migrants. Together with the large crowding out effects, this suggests there may be no

great loss from these assumptions in practice. In a similar spirit, I do not account for

skill distinctions here, but see Appendix A.6 for an exposition which does.

There are two goods: a traded good, priced at P everywhere; and a non-traded good
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(housing), priced at P h
r in area r. Assuming homothetic preferences, one can derive a

unique local price index:

Pr = Q
(

P, P h
r

)

(1)

Let Nr and Lr be employment and population respectively in area r, and suppose all

employed individuals earn a wage Wr. The standard Rosen-Roback model assumes labor

supply is fixed, so there is no meaningful difference between employment and population.

But I allow labor supply to be somewhat elastic to the real consumption wage:

nr = lr + ǫs (wr − pr) + zs
r (2)

where lower case variables denote logs, and zs
r is a local supply shifter. Labor demand is

given by:

nr = −ǫd (wr − p) + zd
r (3)

where zd
r is a local demand shifter. Using (2) and (3), I can solve for employment in terms

of population and local prices. And a specification for housing supply and demand (see

e.g. Appendix A.4) is then sufficient to solve for all the endogenous variables in terms of

population lr alone.

I write indirect utility in area r as a function of the real consumption wage wr − pr

and local amenities ar:

vr = wr − pr + ar (4)

Crucially, the real wage can be replaced using the labor supply curve (2). And the

employment rate can then serve as a sufficient statistic for local labor market conditions:

vr =
1

ǫs
(nr − lr − zs

r) + ar (5)

This result is fundamental to the analysis which follows. In practice, this interpretation of

the local employment rate may be compromised by heterogeneous preferences for leisure.

But as I argue in Section 3.2, this may be addressed by adjusting local employment

rates for demographic composition. Another possible concern is heterogeneity in the

price index: in particular, Albert and Monras (2018) argue that migrants place less

weight on local (and more weight on foreign) prices. But this should not affect the

validity of the sufficient statistic result.4 Beyond this, Amior and Manning (2018) show

the result is robust to numerous possible extensions: multiple traded and non-traded

sectors5, agglomeration effects, endogenous amenities and frictional labor markets.

4Suppose natives and migrants face different price indices in a given area r. The labor supply functions
of natives and migrants will then depend on their respective indices. And so, the real consumption wage
in both natives’ and migrants’ indirect utility can still be replaced by the employment rate, at least after
adjusting it for demographic composition.

5Hong and McLaren (2015) emphasize that migrants support local labor demand through consump-
tion. Within my framework, such effects are observationally equivalent to a flatter labor demand curve.
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2.2 Local dynamics

In the long run, the model is closed with a spatial arbitrage condition which imposes that

vr is invariant geographically. This determines the steady-state population lr in each area.

But I allow for dynamic adjustment to this steady-state, with population responding

sluggishly to local utility differentials. And I distinguish between the contributions of

internal and foreign migration to these population changes:

dlr = λI
r + λF

r (6)

where λI
r is the instantaneous rate of net internal inflows (i.e. from within the US) to

area r, and λF
r is the rate of foreign inflows, relative to local population. I do not account

for emigration here, but I return to this point when discussing the data.

I assume λI
r and λF

r are increasing linearly in local utility vr. The former is given by:

λI
r = γI (nr − lr − zs

r + ar) (7)

where γI ≥ 0 represents the speed of adjustment. I have abstracted from a national-

level intercept in this expression, but one might redefine the amenity effect ar to include

one. Agents in (7) are implicitly myopic: their behavior depends only on current condi-

tions. But as Amior and Manning (2018) show, one can write an equivalent equation for

forward-looking agents, where the elasticity γI depends both on workers’ mobility and

the persistence of local shocks. In such an environment, it is not possible to ascribe a

structural interpretation to γI , but this is not my intent. Turning now to foreign inflows:

λF
r − µr

µr

= γF (nr − lr − zs
r + ar) (8)

where µr is the local “migrant intensity”, the foreign inflow rate in the absence of local

utility differentials.6 Importantly, I permit µr to vary across areas r: intuitively, absorp-

tion into the US may entail fixed costs (due to job market access, language or culture), and

these entry costs may be lower in some areas than others. Once migrants have entered the

US (and paid any fixed costs), I assume they behave identically to natives. In practice,

Appendix C shows the newest migrants do make more internal long-distance moves than

natives, but the differential is eliminated within five years of entry. One might alterna-

tively account for differential foreign inflows by incorporating migrant-specific amenities

(with implications for utility), but this would complicate the exposition without adding

significant insight - at least for the questions I am studying.

6Notice that γF in (8) is the elasticity of the flow from abroad, while γI in (7) is the elasticity of the
stock of existing local residents. But as I show in Appendix A.1, γI can also be expressed in terms of
the elasticities of internal inflows and outflows.
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Summing (7) and (8), aggregate population growth can then be written as:

dlr = µr + γr (nr − lr − zs
r + ar) (9)

where

γr ≡ γI + γFµr (10)

is the (heterogeneous) aggregate population elasticity in area r.

2.3 Discrete-time specification

To estimate the population response in (9), I need a discrete-time expression. Assuming

the supply effect zs
r , amenity effect ar and employment nr change at a constant rate within

each discrete interval, and assuming also that local migrant intensity µr is constant within

intervals, I show in Appendix A.2 that (9) can be written as:

∆lrt = µrt +

(

1 −
1 − e−γrt

γrt

)

(∆nrt − µrt − ∆zsa
rt ) +

(

1 − e−γrt

) (

nrt−1 − lrt−1 − zsa
rt−1

)

(11)

where zsa
rt ≡ zs

rt − art represents the combined supply and amenity effects at time t, µrt

denotes the migrant intensity between t − 1 and t, and γrt is the aggregate population

elasticity in the same interval.

Equation (11) is an error correction model in population and employment: the change

in local population ∆lrt depends on the change in employment ∆nrt and the lagged

employment rate (nrt−1 − lrt−1), which accounts for the initial conditions. The coefficients

on both these terms are monotonically increasing in γrt, and are bounded by 0 below

(as γrt → 0) and 1 above (as γrt → ∞). A coefficient of 1 on ∆nrt would indicate

that population adjusts fully to contemporaneous employment shocks, and a coefficient

of 1 on (nrt−1 − lrt−1) that any initial steady-state deviation is fully eliminated in the

subsequent period by population adjustment. Conversely, coefficients closer to zero would

be indicative of sluggish adjustment.

Using (7) and (8), the discrete-time population response can then be disaggregated

into foreign and internal contributions:

λF
rt = µrt +

γF µrt

γrt

[(

1 −
1 − e−γrt

γrt

)

(∆nrt − ∆zsa
rt − µrt) +

(

1 − e−γrt
) (

nrt−1 − lrt−1 − zsa
rt−1

)

]

(12)

and

λI
rt =

γI

γrt

[(

1 −
1 − e−γrt

γrt

)

(∆nrt − ∆zsa
rt − µrt) +

(

1 − e−γrt
) (

nrt−1 − lrt−1 − zsa
rt−1

)

]

(13)

where λF
rt ≡

∫ t
t−1 λ

F
r (τ) dτ and λI

rt ≡
∫ t

t−1 λ
I
r (τ) dτ . See Appendix A.2 for derivations.
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2.4 Response to migrant intensity, µrt

The supply of foreign migrants, µrt, exerts two distinct effects on local population. First,

a direct effect: µrt enters the foreign inflow one-for-one in (12), though there is a com-

pensating reduction of population growth equal to
(

1 − 1−e−γrt

γrt

)

µrt < µrt. This comes

through partial crowd-out of both the foreign and internal contributions, as the larger

supply of migrants puts downward pressure on the local employment rate.

But there is also an indirect effect: through changes in the aggregate population

elasticity, γrt. This modifies the response of λF
rt and λI

rt to local employment shocks, and

it is this mechanism which motivates the paper. To see it more clearly, it is useful to take

a linear approximation around µrt = 0. As I show in Appendix A.3, this yields:

λF
rt ≈ µrt +

γF µrt

γI

[(

1 −
1 − e−γI

γI

)

(∆nrt − ∆zsa
rt ) +

(

1 − e−γI
)

(

nrt−1 − lrt−1 − zsa
rt−1

)

]

(14)

and

λI
rt ≈

(

1 −
1 − e−γI

γI

)

(∆nrt − ∆zsa
rt − µrt) +

(

1 − e−γI
)

(

nt−1 − lt−1 − zsa
rt−1

)

(15)

−
γF µrt

γI

(

1 − 2
1 − e−γI

γI
+ e−γI

)

(∆nrt − ∆zsa
rt )

−
γF µrt

γI

(

1 − e−γI

− γIe−γI
)

(

nrt−1 − lrt−1 − zsa
rt−1

)

As the bracketed term of (14) shows, a larger supply of foreign migrants µrt makes

foreign inflows λF
rt more responsive to local employment shocks. However, (15) shows

that a larger µrt also moderates the internal response: both
(

1 − 21−e−γI

γI + e−γI

)

and
(

1 − e−γI

− γIe−γI
)

exceed zero for γI > 0. Intuitively, the larger foreign contribution

makes the local employment rate (and therefore utility) less sensitive to employment

shocks; and narrower utility differentials discourage workers from moving internally, along

the path of adjustment.7

Summing (14) and (15) gives the (approximate) aggregate population response:

∆lrt ≈
1 − e−γI

γI
µrt +

(

1 −
1 − e−γI

γI

)

(∆nrt − ∆zsa
rt ) +

(

1 − e−γI
)

(

nrt−1 − lrt−1 − zsa
rt−1

)

+γF µrt

[

1

γI

(

1 − e−γI

γI
− e−γI

)

(∆nrt − ∆zsa
rt ) + e−γI (

nrt−1 − lrt−1 − zsa
rt−1

)

]

(16)

All the coefficients on the µrt terms in this equation exceed zero. In words, as migrant intensity

µrt expands, population grows more (i.e. the direct effect) and becomes more responsive

to local employment shocks (the indirect effect). However, crucially, the coefficients on the

7There is no crowding out of the foreign response in equation (14), but this is an artificial consequence
of linearizing around µrt = 0.

10



µrt terms are also monotonically decreasing in the elasticity of the (offsetting) internal

response, γI ; and they all go to zero as γI → ∞. Intuitively, foreign migration does not

“grease the wheels” if the wheels are already greased.

2.5 “Semi-structural” specification for crowding out

The “direct” and “indirect” effects of µrt are both manifestations of geographical crowd-

out. But this can be addressed more explicitly by asking: what is the effect of realized

foreign inflows λF
rt on net internal inflows λI

rt? This question identifies the same crowding

out effect because of the exclusion restriction embedded in (7) and (8): i.e. that µrt

enters the system exclusively through λF
rt. In exploiting this restriction, this approach

may be interpreted as “semi-structural”; while conversely, (14)-(16) are “reduced form”

in that they collapse the impact of foreign inflows to the original µrt shock. To derive a

semi-structural specification, I first write a new expression for the instantaneous change

in log population (in place of (9)), but this time taking the foreign contribution λF
r as

given:

dlr = λF
r + γI (nr − lr − zsa

r ) (17)

This defines the evolution of the local employment rate. And given this, as I show in

Appendix A.5, I can derive the discrete-time internal contribution λI
rt:

λI
rt =

(

1 −
1 − e−γI

γI

)

(

∆nrt − λF
rt − ∆zsa

rt

)

+
(

1 − e−γI
) (

nrt−1 − lrt−1 − zsa
rt−1

)

(18)

In contrast to (15), migrant intensity µrt does not appear: its effect is fully summarized by

λF
rt. Given the initial conditions (encapsulated by the lagged employment rate and zsa

rt−1),

the effect of λF
rt expands monotonically from 0 to -1, as the internal response becomes

perfectly elastic (γI → ∞). Notice the coefficients on ∆nrt and λF
rt are identical (up

to their sign): this yields an overidentifying restriction which I exploit in the empirical

analysis. Intuitively, these effects represent the pure mobility response to an equal change

in local utility, as summarized by the local employment rate.

However, the coefficient on λF
rt in (18) is not a “true” crowding out effect: it conditions

on employment growth ∆nrt, which may itself be an important margin of adjustment.

To derive an “unconditional” effect, it is necessary to reduce ∆nrt to its exogenous com-

ponents. This requires a specification of the housing market, as local prices shift labor

supply (2) but not demand (3). Assuming individuals spend a fixed share of their income

on housing (i.e. Cobb-Douglas utility) and abstracting from non-labor income, Appendix

A.4 shows that changes in local prices pr can be specified as:

∆ (prt − pt) =
1

κ

[

1

ǫs
(∆nrt − ∆lrt − ∆zs

rt) + ∆nrt

]

(19)
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where κ > 0 and goes to infinity with the elasticity of housing supply.8 In Appendix A.5,

I then show that eliminating ∆nrt from (18) and replacing zsa
r with zs

r −ar (the individual

labor supply and amenity effects) yields:

λI
rt =

(

γI

1−e−γI − 1
)

η

1 +
(

γI

1−e−γI − 1
)

η

(

κ

κ+ ǫd
∆zd

rt − λF
rt − ∆zs

rt +
1

η
∆art

)

(20)

+
γI

1 +
(

γI

1−e−γI − 1
)

η

(

nrt−1 − lrt−1 − zs
rt−1 + art−1

)

where

η ≡

(

1 +
κ + 1

κ+ ǫd
·
ǫd

ǫs

)

−1

< 1 (21)

As before, the crowding out effect of λF
rt goes to -1 as internal flows become perfectly

elastic (γI → ∞). But given I am no longer conditioning on current employment, the

impact of λF
rt is now moderated by an expansion of local labor demand - and potentially

also of housing supply. To see this, notice the effect of λF
rt in (20) is identical to (18) for

η = 1, and it becomes smaller as η declines. Looking at (21), as the elasticity of labor

demand ǫd grows relative to the supply elasticity ǫs, η converges to zero: in the limit,

adjustment is fully manifested in changes in local employment rather than population

(i.e. no crowding out). The effect of the housing supply elasticity (represented by κ),

though, is theoretically ambiguous.9

To the extent that crowding out is incomplete (i.e. less than one-for-one), the model

predicts that foreign inflows should reduce the local employment rate. This offers another

overidentifying restriction which I test below. As I show in Appendix A.5:

∆ (nrt − lrt − zs
rt) =

η

1 +
(

γI

1−e−γI − 1
)

η

[

κ

κ + ǫd
∆zd

rt − λF
rt − ∆zs

rt −

(

γI

1 − e−γI
− 1

)

∆art

]

−
γIη

1 +
(

γI

1−e−γI − 1
)

η

(

nrt−1 − lrt−1 − zs
rt−1 + art−1

)

(22)

Notice the impact of foreign inflows λF
rt goes to zero as γI increases.

Finally, crowding out in the model is driven entirely by the labor market impact of

immigration. But natives’ amenity valuations (which I have taken as given) may also play

a role. Card, Dustmann and Preston (2012) show that hostility to immigration (at least

in Europe) is largely motivated by concern over the composition of neighbors rather than

the labor market. Having said that, this should not necessarily trigger sorting across CZs:

8Specifically, κ ≡
1−ν+ǫhs

r

ν
, where ν is the (fixed) share of income spent on housing, and ǫhs

r is the
housing supply elasticity.

9η (and therefore the crowding out effect) are decreasing in κ (and hence in the elasticity of housing
supply) if and only if εd > 1. This condition ensures that the local wage bill (and therefore housing
demand) expands in the face of foreign inflows.
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natives can also escape migrant communities by switching neighborhoods within CZs (see

e.g. Saiz and Wachter, 2011, on neighborhood segregation). In the context of the crowding

out equations (18) and (20), a disamenity effect is observationally equivalent to a negative

correlation between the foreign inflow λF
rt and the amenity change ∆art. Interestingly,

given the negative coefficient on ∆art in (22), this would imply a less negative (or even

positive) effect of foreign inflows on the local employment rate - as native flight would

tighten the labor market. I exploit this prediction below.

3 Data

3.1 Population

I use decadal census data on individuals aged 16-64 across 722 Commuting Zones (CZs)

in the Continental US over 1960-2010.10 The model disaggregates the change in log local

population ∆lrt into contributions from foreign and internal migration, i.e. λF
rt and λI

rt.

However, since I only observe population at discrete intervals, I cannot precisely identify

λF
rt and λI

rt in the data - though I can offer an approximation. Let LF
rt be the foreign-born

population in area r and time t who arrived in the US in the previous ten years (i.e.

since t− 1). The total population change ∆Lrt may then be disaggregated into LF
rt and

a residual, ∆Lrt − LF
rt. And the log change can be written as:

∆lrt ≡ log

(

Lrt

Lrt−1

)

≡ log

(

Lrt−1 + LF
rt

Lrt−1

)

+ log

(

Lrt − LF
rt

Lrt−1

)

− log

(

1 +
LF

rt

Lrt
·

∆Lrt − LF
rt

Lrt−1

)

(23)

Given this, I approximate λF
rt and λI

rt with λ̂F
rt and λ̂I

rt respectively, where:

λ̂F
rt ≡ log

(

Lrt−1 + LF
rt

Lrt−1

)

(24)

λ̂I
rt ≡ log

(

Lrt − LF
rt

Lrt−1

)

(25)

which leaves the final term of (23) as the approximation error. One might alternatively

take first order approximations, i.e. λF
rt ≈

LF
rt

Lrt−1

and λI
rt ≈

∆Lrt−LF
rt

Lrt−1

. These converge to

λF
rt and λI

rt as they individually become small. However, convergence in the case of (24)

10CZs were originally developed as an approximation to local labor markets by Tolbert and Sizer
(1996), based on county groups, and recently popularized by Autor and Dorn (2013) and Autor, Dorn
and Hanson (2013). Where possible, I base my data on published county-level aggregates from the US
census, extracted from the National Historical Geographic Information System (Manson et al., 2017).
Where necessary, I supplement this with information from microdata census extracts and (for the 2010
cross-section) American Community Survey samples of 2009-11, taken from the Integrated Public Use
Microdata Series (Ruggles et al., 2017). This follows the approach of Amior and Manning (2018); see
Appendix B.1 for further details on data construction. I begin the analysis in 1960 because of data
limitations: I do not observe migrants’ year of arrival in 1960, so I cannot identify the contribution of
new foreign migrants to local population in the 1950s.
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and (25) merely requires that the product
LF

rt

Lrt
·

∆Lrt−LF
rt

Lrt−1

becomes small.

Of course, the residual contribution λ̂I
rt does not just consist of internal flows. It covers

the entire contribution of natives and “old” migrants (i.e. those who arrived in the US

before t− 1), part of which is “natural” growth and emigration from the US. Emigration

is presumably more relevant for the foreign-born (consider e.g. return migration), so it

is useful to additionally study the component of λ̂I
rt which is driven by natives alone:

λ̂
I,N
rt ≡ log

(

Lrt−1 + ∆LN
rt

Lrt−1

)

(26)

where LN
rt is the local stock of natives at time t.

An important concern in constructing λ̂F
rt is undercoverage of unauthorized migrants

in the data. Surprisingly perhaps, many unauthorized migrants do respond to the census

(Warren and Passel, 1987), but a significant fraction do not. The US Department of

Homeland Security (2003) estimates that almost half the migrants who entered the US

in the 1990s did not have legal status, and that the census understated the total 1990s

foreign inflow by about 7 percent. The undercount was more severe in earlier years: see

Card and Lewis (2007). For example, Marcelli and Ong (2002) find that 10-15 percent

of unauthorized Mexicans were missed by the 2000 census; Van Hook and Bean (1998)

estimate that 30 percent were missed in 1990; and Borjas, Freeman and Lang (1991)

estimate an undercount of 40 percent in 1980. Any such undercoverage will cause me to

underestimate the true foreign contribution to local labor market adjustment, and also

to overstate the extent of geographical crowd-out.

3.2 Employment

One contribution of this paper beyond Amior and Manning (2018) is to adjust the em-

ployment variables for local demographics. I have shown above how the employment rate

can serve as a sufficient statistic for local economic opportunity. But if different worker

types have different propensities to work (for given labor prices), the employment rate

will be conflated with variation in local demographic composition. Though the model

does not explicitly account for such heterogeneity, these compositional effects may be

represented by variation in the local supply shifter zs
r . This variation is not a problem if

the instruments (Bartik shift-shares) can exclude it. But the exclusion restriction will be

violated if demographic groups with higher employment rates (such as the high educated

or foreign-born men11) also differ systematically in geographical mobility.

My strategy is to construct an employment rate variable, denoted ẼRrt, which adjusts

for local demographic composition. To this end, I run probit regressions of employment

11See Borjas (2016) on the latter.
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on a detailed range of individual characteristics12 and a set of location fixed effects, sep-

arately for each census cross-section. I then compute ẼRrt by taking the mean predicted

employment rate in each area r for a distribution of local demographic characteristics

identical to the full national sample:

ẼRrt =
∫

i
Ω
(

Xitθ̂t + θ̂rt

)

g (Xit) di (27)

where Ω is the normal c.d.f., θ̂t is the vector of estimated probit coefficients on the

individual characteristics, θ̂rt are the probit area fixed effects, and g (Xit) is the national-

level density of individuals with characteristics Xit at time t.

What are the implications for the estimating equation? Notice the log of the composition-

adjusted rate (at some unspecified time) can be written as:

log ẼRr ≡ nr − lr − z̃s
r (28)

where z̃s
r is the component of the supply shifter zs

r attributable to observable local de-

mographic composition. I can then define ñr as the composition-adjusted level of log

employment:

ñr ≡ nr − z̃s
r ≡ log ẼRr + lr (29)

and the instantaneous population response dlr in (9) can be rewritten as:

dlr = µr + γr [ñr − lr − (zs
r − z̃s

r) + ar] (30)

where (zs
r − z̃s

r) is the residual component of the local supply shifter (which cannot be

attributed to local composition). In discrete time, by symmetry with (11), local popula-

tion changes ∆lrt will then depend on (i) the current change in the composition-adjusted

employment level, ∆ñrt ≡ ∆ log ẼRrt +∆lrt, and (ii) the lagged log composition-adjusted

rate (ñrt−1 − lrt−1) ≡ log ẼRrt−1. The identifying conditions are now weaker: conditional

on the right hand side controls, the Bartik instruments need only exclude the residual

supply effect (zs
r − z̃s

r) and any unobserved amenities in ar.

3.3 Shift-share instruments

I identify changes in local demand using the pervasive Bartik (1991) industry shift-share,

which I denote brt. The intention is to exclude unobserved supply and amenity effects

in zs
r and ar. The Bartik predicts local employment growth, conditional on initial indus-

trial composition, by assuming employment in each industry i grows at the average rate

12Age, age squared, education (five categories), ethnicity (black, Asian, Hispanic), gender, foreign-
born status, and where available, years in US and its square for migrants, together with a rich set of
interactions. See Appendix B.2.
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elsewhere in the country:

brt =
∑

i

φi
rt−1∆ni(−r)t (31)

where φi
rt−1 is the share of workers in area r at time t− 1 employed in a 2-digit industry

i; and ∆ni(−r)t is the change in log employment nationally in industry i, excluding area

r.13 I instrument the current employment growth ∆ñrt and the lagged employment

rate (ñrt−1 − lrt−1) using the current and lagged Bartiks (brt and brt−1) respectively. In

principle, the lagged employment rate will depend on a distributed lag of historical shocks,

but I find the first lag alone has sufficient power for the first stage.

Similarly, I proxy local migrant intensity µrt with a migrant shift-share, popularized

by Altonji and Card (1991) and Card (2001). New migrants are known to cluster around

established co-patriot communities, whether because of family ties, job networks (Munshi,

2003) or cultural amenities (Gonzalez, 1998). The shift-share predicts the supply of

new migrants to each area r by allocating new arrivals proportionately to the size of

these communities. To express this predicted supply (which I denote µ̂rt) in terms of its

contribution to the log population change ∆lrt, I use an identical functional form to (24):

µ̂rt = log

(

Lt−1 +
∑

o φ
o
rt−1L

F
o(−r)t

Lrt−1

)

(32)

where
∑

o φ
o
rt−1L

F
o(−r)t is the predicted number of new arrivals: φo

rt−1 is the share of origin

country o migrants who live in area r at time t − 1, and LF
o(−r)t is the number of new

origin o migrants (again excluding area r residents) who arrived in the US between t− 1

and t. This is expressed relative to the initial aggregate local population, Lrt−1. In the

“semi-structural” specification (20), µ̂rt serves as an instrument for foreign inflows λ̂F
rt: it

should in principle exclude unobserved components of zs
r , ar and also demand shocks zd

r .

I construct both the Bartik and migrant shift-shares using census and American Com-

munity Survey (ACS) microdata: see Appendix B.3 for further details.

3.4 Amenity controls

I control for a range of observable amenity effects in my empirical specifications, iden-

tical to those in Amior and Manning (2018). These consist of (i) a binary indicator for

the presence of coastline14 (ocean or Great Lakes); (ii) climate indicators, specifically

maximum January temperature, maximum July temperature and mean July relative hu-

midity (Rappaport, 2007, shows that Americans have been moving to places with more

pleasant weather); (iii) log population density in 1900; and (iv) an index of CZ isola-

tion, specifically the log distance to the closest CZ, where distance is measured between

13This exclusion, recommended by Goldsmith-Pinkham, Sorkin and Swift (2018), was proposed by
Autor and Duggan (2003) to address concerns about endogeneity to local supply shocks.

14The coastline data was borrowed from Rappaport and Sachs (2003).
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population-weighted centroids in 1990. Because the impact of some of these might vary

over time (see Rappaport and Sachs, 2003; Rappaport, 2007), I interact each of them

with a full set of year effects in the regressions below.

I do not control for time-varying amenities which may be endogenous to labor mar-

ket conditions, such as crime and local restaurants, since these present challenges for

identification. This means the estimated coefficients on the employment shocks should

be interpreted as “reduced form” effects, accounting for both their direct (labor market)

effect on population and any indirect effects driven by changes in local amenity values

(see Diamond, 2016).

4 Population response to local employment shocks

4.1 Average contribution of foreign migration

I begin by studying the average contribution of foreign migration to local population

adjustment, initially abstracting away from heterogeneity in the local migrant intensity

µrt. In line with equation (11), I implement the following error correction model:

∆lrt = β0 + β1∆ñrt + β2 (ñrt−1 − lrt−1) + ArtβA + εrt (33)

where t denotes time periods at decadal intervals, and ∆ is a decadal change. I regress

the change in log population ∆lrt on the the change in log (composition-adjusted) em-

ployment ∆ñrt and the lagged (composition-adjusted) employment rate (ñrt−1 − lrt−1),

i.e. the initial deviation from steady-state. The vector Art contains observable compo-

nents (amenity effects) from the ∆zsa
rt and zsa

rt−1 terms in (11), as well as a full set of time

effects. The error εrt includes any unobserved supply or amenity effects. All observations

are weighted by the lagged local population share, and standard errors are clustered by

state.15 It should be emphasized that (33) is misspecified, in the sense that it neglects

the dependence of the β parameters on local migrant intensity.

[Tables 1 and 2 here]

I set out estimates of β1 and β2 in Panel A of Table 1. The OLS responses of the

aggregate population ∆lrt are 0.86 and 0.25 respectively (column 1). These cannot be

interpreted causally: unobserved supply shocks will bias OLS estimates of β1 upwards;

and β2 estimates may be biased downwards if these shocks are persistent. For example,

a positive supply shock should raise local population growth but reduce the employment

15In line with Autor, Dorn and Hanson (2013), CZs which straddle state lines are allocated to the
state which accounts for the largest population share. This leaves me with 48 states: Alaska and Hawaii
are excluded from the sample, and the Washington CZ is allocated to Maryland.
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rate. To address these concerns, I instrument the two endogenous variables with the

current and lagged Bartiks. I set out the first stage estimates in columns 1-2 of Table 2. I

have marked in bold where one should theoretically expect positive effects. As one might

hope, the current Bartik accounts for the entire effect on ∆ñrt, and the lagged Bartik

for the effect on (ñrt−1 − lrt−1), with large associated Sanderson-Windmeijer (2016) F-

statistics (which account for multiple endogenous variables). The IV estimates of β1

and β2 in column 5 are 0.75 and 0.55 respectively (and the associated standard errors

are small), so the OLS bias is in the expected direction. These numbers indicate large

but incomplete population adjustment over one decade to contemporaneous employment

shocks and initial conditions. Interestingly, they are somewhat larger than estimates

based on raw (i.e. non-adjusted) employment variables: see Appendix D.1.16

Columns 2 and 6 replace the dependent variable with the approximate foreign contri-

bution λ̂F
rt (as defined in Section 3.1), and columns 3 and 7 with the residual contribution

λ̂I
rt. The approximation appears reasonable: for IV, the β1 estimates in columns 6 and 7

sum to 0.76, and the β2 estimates to 0.58 - very close to the column 5 estimates. Again

looking at IV, new migrants account for 32 percent of the overall population response to

contemporaneous shocks (β1), and remarkably, 57 percent of the response to the lagged

employment rate (β2) - despite accounting for just 4 percent of the population on av-

erage.17 To the extent that new migrants are under-reported in the census, the true

contribution may be even larger. The numbers are much smaller for OLS however: 6 and

36 percent respectively. I also report the contribution of natives alone, i.e. λ̂
I,N
rt from

(26). The IV estimates are very similar to column 7, which suggests old migrants (i.e.

those already living in the US in t − 1) contribute little to the response to employment

shocks: it appears emigration does not play an important role.

In Panel B, I control additionally for the local migrant shift-share µ̂rt (which proxies

for migrant intensity), as defined in (32). There are two key messages here. First, the

inclusion of µ̂rt wipes away about half the foreign response to local employment shocks

(column 6). Thus, the large contribution of new migrants to local adjustment is partly

explained by their preference to settle in co-patriot communities - which happen to be

disproportionately located in high-employment areas. This should come as no surprise:

the coincidence of migrant enclaves with high employment is a natural consequence of

the persistence of local demand shocks.

16Appendix D.1 places these at 0.63 and 0.39 for β1 and β2 respectively. The difference is intuitive.
For example, the college educated population is known to respond more strongly (see e.g. Amior and
Manning, 2018), but these individuals also have higher employment rates. As a result, the raw change
in total employment (the right hand side variable) should exceed the change for individuals of fixed
characteristics - so estimates based on raw employment should understate the population response.

17As one might expect, the average foreign contribution is smaller once I omit population weights
(see Appendix D.3): this is because new migrants typically cluster in larger CZs. This speaks to the
misspecification of (33): it does not account for local heterogeneity. In Appendix D.4, I break down
the foreign contribution by country or region of origin, but the response is not dominated by particular
origins.

18



On the other hand, the overall population response is unaffected (column 5): holding

µ̂rt fixed, the now smaller foreign contribution to adjustment is offset by a larger residual

contribution (column 7). This speaks to the “indirect” effect of migrant intensity µrt (on

the response to local shocks) discussed above, and I address this more explicitly in what

follows. Notice also that µ̂rt elicits a clear “direct” effect: a one-for-one increase in the

foreign contribution (column 6), offset by a similar decline in the residual (column 7).

4.2 Local heterogeneity

Exploiting variation in the migrant shift-share µ̂rt across space and time, I now study

heterogeneity in the local population response. In line with (16), I estimate:

∆lrt = βc
0 + βc

1∆ñrt + βc
2 (ñrt−1 − lrt−1) + Artβ

c
A (34)

+
[

βc
0µ + βc

1µ∆ñrt + βc
2µ (ñrt−1 − lrt−1) + Artβ

c
Aµ

]

µ̂rt + εrt

where µ̂rt is now interacted with the change in log employment ∆ñrt, the lagged em-

ployment rate (ñrt−1 − lrt−1) and the amenity effects in Art. I have introduced two new

endogenous variables, so I need two additional instruments: I use interactions between

migrant intensity µ̂rt and the current and lagged Bartiks. The first stage estimates are

reported in columns 5-8 of Table 2. Each instrument has a strong positive effect (with a

small standard error) on its corresponding endogenous variable - as marked in bold.

[Table 3 here]

Table 3 reports OLS and IV estimates of (34). It is useful to begin with columns 2 and

6, where I replace the dependent variable with the foreign contribution λ̂F
rt. Consistent

with (14) in the model, the interactions pick up the entire effect of employment shocks:

i.e. employment growth attracts no foreign inflows in CZs with µ̂rt = 0. In OLS, the

responses to both ∆ñrt and (ñrt−1 − lrt−1) increase to about 0.2 at µ̂rt = 0.1, which is the

98th percentile of µ̂rt (the maximum value is 0.29: the distribution is heavily skewed).

And in IV, they increase to a remarkable 0.49 and 0.74 respectively at µ̂rt = 0.1.

As the model predicts, these larger foreign contributions are offset by reduced residual

contributions. The story is mixed in OLS, but the patterns are much starker for IV: in

areas better supplied by new migrants, aggregate population growth is not significantly

larger nor more responsive to employment shocks (column 5). This entails a substantial

reduction in the residual contribution (column 7): moving from µ̂rt = 0 to µ̂rt = 0.1, it

declines from 0.81 to 0.28 for the ∆ñrt response, and from 0.60 to -0.06 for (ñrt−1 − lrt−1).

And at least for IV, the residual contribution also fully offsets the “direct” effect of µ̂rt

(i.e. independent of the employment shocks) on local population. Having said that, it is

worth stressing that the estimates do also admit the possibility of incomplete crowding
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out: the standard errors on the offsetting residual response (column 7) are close to half

the magnitude of the βc
0µ and βc

2µ coefficients (though it is smaller for βc
1µ).

Columns 4 and 8 report the contribution of natives alone. The interaction effects in

all specifications exceed those in columns 3 and 7, implying that old migrants amplify

the contribution of new migrants to adjustment - while natives account for the entire

crowding out effect. The impact of old migrants is intuitive: they disproportionately

reside in areas with large migrant shift-shares µ̂rt, so they should mechanically contribute

more to population adjustment in these places.

Appendix D subjects the IV estimates in Tables 1 and 3 to a range of robustness

tests. First, in an effort to account for unobserved time-invariant amenity or supply

effects, I control for CZ fixed effects (which pick up local population trends). This is a

demanding test in such a short panel, but the crowding out patterns are unaffected. They

are also robust to dropping the dynamic term (the lagged employment rate) and using

raw (instead of composition-adjusted) employment variables. This latter result should be

reassuring: since adjusting local employment for observable characteristics makes little

difference to the results, one may be less concerned about the influence of unobservables.

Omitting the amenity-µ̂rt interacted controls makes little difference to the coefficients,

but the standard errors do become much larger. One may be concerned that the crowding

out effects are driven by outliers with very large µ̂rt (given the skew in this variable), but

dropping observations with µ̂rt > 0.1 makes little difference. And finally, for CZs whose

population exceeded 50,000 in 1960, the crowding out result is also robust to removing

the population weights.

4.3 Evolution of local employment rates

Importantly, the model treats natives and migrants as perfect substitutes. The large

crowding out effects indicated by Table 3 suggest there may be no great loss from this

assumption - at least at the aggregate level. Nevertheless, one may be concerned that the

local demand shocks (and the population responses to these shocks) affect natives and

migrants differently. As it happens though, I find no significant difference in the effect

on their respective employment rates.

[Table 4 here]

In Table 4, I re-estimate (33) and (34) using the same instruments as before, but

replacing the dependent variable with changes in log (composition-adjusted) employment

rates: first, the aggregate rate ∆ (ñrt − lrt); and then the native and migrant-specific

rates. The latter two are adjusted using the same procedure outlined in Section 3.2, but
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with the sample restricted to natives or migrants.18 Notice the column 1 estimates are

merely transformations of those in column 5 of Table 1: the coefficient on the employment

change is equal to 1 − β1 in (33), while the coefficient on the lagged employment rate is

simply −β2. In words, a larger population response to an employment shock implies a

smaller employment rate effect. But importantly, the responses of the native and migrant

employment rates in columns 2 and 3 are similar in magnitude.

Columns 4-6 account additionally for local heterogeneity, in line with (34). This

specification is comparable to Cadena and Kovak’s (2016) tests for the “employment

smoothing” effects of Mexican enclaves. Again, the coefficients in column 4 are merely

transformations of those in column 5 of Table 3. The insignificant effects of the interac-

tions suggest that foreign migration does not smooth local fluctuations in employment

rates. And the same applies to the native and migrant employment rates individually.

5 “Semi-structural” estimates of crowding out

5.1 Estimates of crowding out

The analysis above offers a “reduced form” perspective on the impact of local migrant

intensity µrt. The results suggest it has no significant effect on the evolution of local

population or employment rates. The natural interpretation is that new migrants crowd

out the contribution of internal mobility to local population growth - both directly and

in the response to local employment shocks. But this crowding out effect can be tested

more explicitly using a “semi-structural” specification, imposing that the entire effect of

µ̂rt in Table 3 comes through realized foreign inflows. The question then becomes: for a

given foreign inflow, what is the net outflow? A key advantage of this approach is a much

less demanding empirical specification than (34) (with its four endogenous variables), and

this should allow for greater precision in the estimates. In line with equation (20) in the

model, I estimate the following specification:

λ̂I
rt = δ0 + δ1λ̂

F
rt + δ2 (ñrt−1 − lrt−1) + δ3brt + ArtδA + εrt (35)

where λ̂I
rt and λ̂F

rt are the approximate residual and foreign contributions, and the crowd-

ing out effect is given by δ1. The lagged employment rate is in principle a sufficient

statistic for all historical labor demand and supply shocks, including past foreign inflows.

I instrument the current foreign inflow λ̂F
rt with the migrant shift-share µ̂rt, and the lagged

employment rate with the lagged Bartik brt−1. I include the current Bartik brt as a con-

trol to proxy for contemporaneous demand shocks, ∆zd
r . Any unobserved components of

1811 small CZs in the 1960s are omitted from the migrant employment rate regressions. These CZs
do not offer a sufficient migrant sample in the microdata to deliver fixed effect estimates in the probit
regression, preventing me from computing composition-adjusted employment rates.
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supply or demand shocks are contained in the residual εrt. Since I am not conditioning

on the contemporaneous change in employment, δ1 will depend not only on the speed of

internal population adjustment but also on the elasticities of labor demand, labor supply

and housing supply: see equation (20).

I present estimates of (35) and various deviations in columns 1-6 of Table 5 (I return

to columns 7-8 in Section 5.2). The broad message is a substantial crowding out effect,

consistent with the results in the previous section. Column 1 offers OLS estimates, with

δ1 taking a value of -0.76. That is, a foreign inflow which contributes 1 log point to local

population is associated with a net outflow (of natives or earlier migrants) which removes

0.76 points. However, omitted local shocks (which influence foreign inflows) make it

difficult to interpret the OLS estimates.

[Tables 5 and 6 here]

Column 2 reports IV estimates of (35), using the migrant shift-share µ̂rt and lagged

Bartik brt−1 as instruments. The associated first stage regressions have substantial power

(see columns 1 and 4 of Table 6), with the right instruments explaining the right endoge-

nous variables (as marked in bold). The IV estimate is larger than OLS, with δ1 reaching

-1.1: i.e. exceeding (though insignificantly different from) one-for-one crowd-out. This

effect is precisely estimated, with a standard error of 0.13. The fact that IV exceeds OLS

is consistent with the traditional concern of unobserved demand shocks (e.g. Altonji and

Card, 1991).

One important concern is that λ̂F
rt may be picking up the response to both current

and historical foreign inflows (in a world with sluggish adjustment), given the tight local

persistence in these inflows and in the migrant shift-share instrument µ̂rt (Jaeger, Ruist

and Stuhler, 2018). For example, the correlation between the time-demeaned µ̂rt and its

lag is 81 percent.19 In principle, the lagged employment rate should summarize the impact

of all historical shocks (including foreign inflows), and λ̂I
rt does respond strongly to this

variable. To test whether this “sufficient statistic” is performing its function effectively, I

now control for the lagged migrant shift-share µ̂rt−1 (following Jaeger, Ruist and Stuhler).

As column 5 of Table 6 shows, µ̂rt−1 does adversely affect the lagged employment rate in

the first stage. But reassuringly, it has no effect conditional on the lagged employment

rate in the second stage (column 3 of Table 5). In contrast, when I drop the lagged

employment rate in column 4 (and replace it with its lagged Bartik instrument), µ̂rt−1

picks up much of the negative effect. Notice also that the crowding out effect in column 4

is somewhat dented: δ1 falls from -1.1 to -0.79. One intuition is the following: the lagged

employment rate in column 3 accounts additionally for the impact of unobserved demand

shocks, which are positively correlated with the supply of new migrants.

19This reflects a combination of stickiness in local migrant settlement patterns and national-level
persistence of foreign inflows by country of origin.
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In recent work, Peri (2016) has emphasized the importance of checking for pre-trends

when identifying the local impact of immigration. The simplest approach is to replace

the dependent variable (the residual contribution, λ̂I
rt) with its lag. I necessarily lose

one decade of data (the 1960s), but this does not seem to matter: compare columns 4

and 5. In column 6, the lagged λ̂I
rt−1 is fully explained by the lagged migrant shift-share

µ̂rt−1 and Bartik brt−1. In contrast, the current foreign contribution λ̂F
rt and Bartik brt

are statistically insignificant. This suggests I am able to empirically disentangle current

from historical shocks in this data.

But serial correlation in the enclave instrument µ̂rt is by no means the only concern.

In a world with persistent shocks or sluggish adjustment, any omitted variation which

raises local utility (whether supply or demand-driven) is liable to correlate positively

with µ̂rt (Pischke and Velling, 1997; Borjas, 1999). This is a natural consequence of the

large foreign contribution to local adjustment (documented in Table 1), which over time

expands migrant population shares in high-utility areas. As Goldsmith-Pinkham, Sorkin

and Swift (2018) emphasize, it is endogeneity of these shares which threatens the validity

of shift-share instruments. To the extent this variation is unobserved, this may bias the δ1

estimate towards zero - if it simultaneously attracts inflows of new migrants and existing

US residents.

In this environment, right-hand side controls take on a crucial role. In Table 7, I study

the sensitivity of my basic IV estimate of δ1 (in column 2 in Table 5) to the choice of

controls and also decadal sample. Without any controls, the estimates vary substantially

over time: there is little crowd-out before 1990, but much more thereafter. Card (2009a)

finds something similar, and see also Borjas, Freeman and Katz (1997) on the instability

of spatial correlations: this offers a strong motivation for pooling many decades of data.

As one might expect, the average δ1 increases (from -0.53 to -0.75) when I control for the

current Bartik and lagged employment rate (column 6). And once I include the various

amenity effects (and climate in particular), I cannot statistically reject a δ1 of at least

-1 in any decade. Interestingly, after including all the controls, δ1 is now much larger in

the 1960s and 1970s than later decades - which may reflect more severe undercoverage of

unauthorized migrants in those years. I return to this question below.

[Table 7 here]

The final column of Table 7 shows about two thirds of the δ1 effect is driven by

natives rather than old migrants. But this result overlooks some important heterogeneity:

exceptionally, in the 2000s, old migrants account for the entire crowding out effect (see

Appendix E.3). This is despite my finding of a strong native population response to

demand shocks in the same decade (Appendix H). The discrepancy may be driven by

substantial return migration of Mexicans in the 2000s: see Hanson, Liu and McIntosh

(2017).
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Appendix E shows the crowding out effect is robust to dropping population weights

and various other specification changes. My specification of the foreign and residual

contributions is almost identical to that of Card and DiNardo (2000) and Card (2001), as

recommended by Peri and Sparber (2011) and Card and Peri (2016). While they regress
∆Lrt−LF

rt

Lrt−1

on
LF

rt

Lrt−1

, I am regressing log
(

Lrt−LF
rt

Lrt−1

)

on log
(

Lrt−1+LF
rt

Lrt−1

)

, following the guidance

of my model.20 The appendix shows this change has a negligible effect on the δ1 estimate.

I also offer estimates based on an alternative approach recommended by Wozniak and

Murray (2012), which specifies the key variables in levels, i.e. regressing
(

∆Lrt − LF
rt

)

on

LF
rt, without normalizing by initial population. Additionally, I cannot reject one-for-one

crowding out when I control for CZ fixed effects21 (intended to pick up time-invariant

local supply or demand effects), though the estimates become less stable. The effect is

robust to basing the migrant shift-share instrument in (32) on 1960 origin shares (rather

than lagged-once shares) in all decades. Also, graphical plots of the δ1 estimates show

they are not driven by outliers. Borjas (2006) finds less crowding out across states than

metropolitan areas, but I cannot reject a δ1 of -1 using state-level data. I also show the

effect is entirely driven by reductions of migratory inflows to the affected CZs, rather than

increase in outflows. This is consistent with evidence from Coen-Pirani (2010), Monras

(2015a), Dustmann, Schoenberg and Stuhler (2017) and Amior and Manning (2018), who

document a disproportionate role for inflows in driving local population adjustment.

5.2 Why is the crowding out effect so large?

The size of the crowding out effect is certainly surprising, given the population response

to demand-driven changes in employment is somewhat sluggish (see Table 1). These

results are even harder to reconcile in the context of elastic labor demand or imperfect

substitutability between natives and migrants: both should moderate any effect of foreign

inflows on existing residents. On the other hand, as I show below, the one-for-one crowd-

ing out does not appear to bring about full adjustment. These contradictions become

more conspicuous once I control for current employment growth ∆ñrt in the crowding

out equation (35). This yields a specification which reflects (18) in the model:

λ̂I
rt = δc

0 + δc
1λ̂

F
rt + δc

2∆ñrt + δc
3 (ñrt−1 − lrt−1) + Artδ

c
A + εrt (36)

The current Bartik brt is now excluded from the right hand side and serves instead as

an instrument for ∆ñrt. δc
1 is a “conditional” crowding out effect: employment may

be an important margin of adjustment to foreign inflows, but its contribution is now

20My λ̂F
rt specification in (24) shares with Peri and Sparber (2011) and Card and Peri (2016) the

advantage of depending only on new foreign inflows - and not on changes in the population of longer
term US residents (which might otherwise introduce a spurious correlation with λ̂I

rt)
21This approach is similar in spirit to the double differencing methodology of Borjas, Freeman and

Katz (1997) and is recommended by Hong and McLaren (2015).
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partialled out. Equation (18) predicts the residual contribution λ̂I
rt responds equally to

foreign inflows and employment shocks: i.e. δc
1 = −δc

2. As I explain in Section 2.5, these

elasticities represent (in principle) pure mobility responses to changes in local welfare.

I report IV estimates of (36) in column 7 of Table 5 above. δc
1 exceeds δc

2 by 0.17

in magnitude. This differential (the “excess response” to foreign inflows) is statistically

significant: the p-value on a test for equality is 0.013. Notice also the coefficient on λ̂F
rt

is actually smaller in column 7 (when I control for current employment) than column

2 (when I do not). Thus, any changes in local employment appear to amplify (rather

than moderate) the impact of foreign inflows. I show this more explicitly in column 8:

somewhat perversely, total employment contracts in response to foreign inflows.

[Table 8 here]

Indeed, despite one-for-one crowding out, I identify small adverse effects of foreign

inflows on local employment rates - consistent with Smith (2012), Edo and Rapoport

(2017) and Gould (forthcoming). In Table 8, I re-estimate (35) using the same instru-

ments as before, but replacing the dependent with changes in the (composition-adjusted)

employment rates of natives or migrants. In my preferred specification (column 1), the

elasticity of the native employment rate to foreign inflows is -0.21. The coefficient of

-0.4 on the lagged employment rate suggests the effect is largely dissipated within two

decades. As in Table 5, the lagged migrant shift-share control µ̂rt−1 in column 2 makes

little difference, which suggests the lagged employment rate is successfully accounting for

the initial conditions. Once I drop the lagged employment rate in column 3, I identify

a larger initial impact of foreign inflows (-0.35) - though the rate of adjustment implied

by µ̂rt−1 (which now takes a positive offsetting effect) is similar to before. Columns 4

and 5 (which exclude the 1960s) show what happens when I replace the dependent with

its lag. Reassuringly, as in Table 5, µ̂rt−1 picks up the entire (negative) effect on the

lagged dependent, and the current inflow λ̂F
rt becomes insignificant. The final column

re-estimates my preferred IV specification (column 1) for the migrant employment rate:

the effect is remarkably similar to natives, consistent with the evidence in Table 4 above.

Appendix F.2 shows that using raw (instead of composition-adjusted) employment rates

makes little difference to the results: given that observable characteristics do not matter,

one may be less concerned about the influence of unobservables.

To summarize, the residual population does appear to respond “excessively” to foreign

inflows. But it also seems that one-for-one crowding out is insufficient for full adjustment.

How can these results be interpreted? One explanation is that the migrant shift-share

instrument µ̂rt is negatively correlated with unobserved demand shocks. But this hypoth-

esis conflicts with the evidence in Table 1 (on the effect of the µ̂rt control): there is good

reason to believe migrant enclaves are disproportionately located in high-demand areas.
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An interesting variant of this hypothesis is an agglomeration effect (triggered by foreign

inflows) which favors migrants at the expense of natives. But an agglomeration story

does not sit comfortably with the apparent contraction of the local employment stock.

Alternatively, the excess response may be driven by natives’ distaste for migrant en-

claves. As I note in the discussion following equation (22), this has testable implications:

to the extent that natives leave (on net) for non-labor market reasons, this should put

upward pressure on local employment rates - or at least those of natives. But Table 8

shows the opposite effect.

A third possibility is that migrants are more productive than natives, in the sense of

doing the same work for less pay (see e.g. Nanos and Schluter, 2014; Albert, 2017; Amior,

2017b). This story is consistent with evidence of migrants downgrading in occupation

(Dustmann, Schoenberg and Stuhler, 2016). If migrants offer more “efficiency units” than

natives, crowd-out in excess of one-for-one may be required for complete local adjustment.

And finally, the census data may be overstating the “true” crowding out effect because

of undercoverage of unauthorized migrants. For example, suppose the “true” δc
1 in (36)

is equal to −δc
2, and any estimated difference is due to mismeasurement. Looking at

column 7 of Table 5, this would imply the foreign inflow is understated in the census

by 0.913−0.743
0.913

= 19 per cent. This number seems reasonable in light of the evidence on

undercoverage in Section 3.1.

5.3 Education-specific effects

In Appendix F (and Table A9), I study heterogeneity in the impact of foreign inflows

across education groups. My strategy is to replace the dependent variable of (35) with

various education-specific outcomes: population, employment rates, wages and housing

expenses. Interestingly, the results show that the foreign inflow elicited by the migrant

shift-share µ̂rt resembles the existing local population in terms of college graduate share -

though high school dropouts are disproportionately represented among the new arrivals.

Still, such statistics may understate the labor market pressure on low educated natives

- to the extent that new migrants downgrade in occupation, and that undercoverage is

more severe among low educated migrants.

Indeed, the adverse effect of foreign inflows on native employment rates falls entirely on

those without college degrees. One might then expect these individuals to account for the

bulk of the net internal outflow. But the local attrition of natives and earlier migrants

is surprisingly balanced in terms of education. This may be explained by educational

differentials in geographical mobility22, though it is worth emphasizing (as I do below)

22See e.g. Bound and Holzer (2000); Wozniak (2010); Notowidigdo (2011); Amior (2017a). In particu-
lar, using the same data as this paper, Amior and Manning (2018) show the college graduate population
adjusts fully to local employment shocks within one decade; and any sluggishness in local adjustment is
due to non-graduates.
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that changes in local education stocks may also reflect changes in the characteristics of

local birth cohorts.

In principle, lower employment rates should be reflected in lower real consumption

wages. While I find no impact on natives’ average residualized nominal wages23, housing

costs do respond positively (see also Saiz, 2007) - though the effect is statistically insignif-

icant. However, this masks some interesting heterogeneity: there is a small positive effect

on the wages of graduate natives, but they also experience larger increases in housing

expenditures (purged of local housing characteristics). Whether this reflects changes in

unobserved housing consumption or prices is open to interpretation, as I discuss in the

appendix. Certainly, an analysis of the impact on real consumption wages is challenging

- and not least because it is difficult to construct credible local wage deflators. This

underscores the potential advantages of studying welfare effects using local employment

rates, relying on the sufficient statistic result of Amior and Manning (2018).

6 Within-area estimates

6.1 Empirical specification

In contrast to my approach above, the seminal work in the literature has typically ex-

ploited variation in migration shocks within geographical areas. In principle, this should

help address the challenge of omitted local effects highlighted by Table 7. Peri and

Sparber (2011) recommend the following estimating equation:

λ̂I
srt = δw

0 + δw
1 λ̂

F
srt + drt + dst + εsrt (37)

where λ̂F
srt and λ̂I

srt are the foreign and residual contributions to population in skill group

s in area r. I specify these analogously to (24) and (25):

λ̂
F

srt ≡ log

(

Lsrt−1 + LF
srt

Lsrt−1

)

(38)

λ̂I
srt ≡ log

(

Lsrt − LF
srt

Lsrt−1

)

(39)

where LF
srt is the stock of new migrants (arriving in the US since t−1) of skill s in area r.

drt are area-time interacted fixed effects, which absorb local shocks common to all skill

groups; and dst are skill-time interacted effects, which account for national-level trends

across skill groups. Note this approach differs from the analysis in Section 5.3, which

studies education-specific responses to aggregate-level CZ shocks.

23Wage effects may be difficult to interpret in the context of declining employment rates, if it is the
lowest paid natives who are leaving employment: see Card (2001) and Bratsberg and Raaum (2012).
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The coefficient of interest, δw
1 , identifies the impact of skill-specific foreign inflows on

local skill composition - or more precisely, on the contribution of existing US residents

to local skill composition. Comparable estimates of δw
1 in the literature are typically

small and sometimes positive (Card and DiNardo, 2000; Card, 2001, 2005; Cortes, 2008),

though Borjas (2006) and Monras (2015b) offer alternative views.24 Either way, a small δw
1

is not necessarily inconsistent with large geographical crowd-out. This is for two reasons.

First, changes in local skill composition reflect not only differential internal mobility, but

also changes in the characteristics of local birth cohorts. And second, as Card (2001) and

Dustmann, Schoenberg and Stuhler (2016) point out, δw
1 does not account for the labor

market impact that new migrant arrivals exert outside their own skill group s.

Regarding the latter point, it is useful to consider a simple example. Suppose produc-

tion technology in area r, for the tradable good priced at P , is a CES function (see e.g.

Card, 2001) over skill-defined local labor inputs: Yrt = ψrt (
∑

s αsrtN
σ
srt)

ρ

σ , where ψrt is an

aggregate productivity shifter, 1
1−σ

is the elasticity of substitution between labor inputs,

and the exponent ρ ≤ 1 allows for diminishing local returns. Assuming competitive labor

markets, local wage growth for skill type s can then be expressed as:

∆ (wsrt − pt) = ∆ logαsrt − (1 − σ) ∆nsrt +
σ

ρ
∆ logψrt +

ρ− σ

ρ
∆yrt (40)

Consider a skill-specific expansion of local employment ∆nsrt, driven by foreign migration.

The area-time fixed effects drt in (37) will absorb the local wage effect which is common to

all skill groups, as encapsulated by ∆yrt in (40). Conditional on the drt, the wage response

is then the inverse of the elasticity of substitution, i.e. 1 − σ. Intuitively, for larger σ,

the impact on wages is more diffused across the various skill groups - and the same will

be true of any mobility response. So even in the absence of cohort effects, δw
1 will not

in general identify an aggregate-level crowding-out effect akin to δ1 in (35). The single

exception is the case of an additively separable production function (i.e. σ = ρ), which

ensures no diffusion of wage effects. In Appendix A.6, I offer a more formal mapping of

this multi-skill model onto the empirical specification (37), accounting for skill-specific

population dynamics.

6.2 Estimates of δw
1

In practice, we do not know the “true” skill delineation: this is ultimately a decision for

the researcher. But in light of the discussion above, empirical estimates of δw
1 are likely

to be sensitive to this decision, as different skill delineations will artificially engender

24Borjas’ (2006) estimates imply that each new migrant crowds out 0.61 natives (within skill groups)
across metropolitan areas, though his methodology is disputed by Peri and Sparber (2011) and Card
and Peri (2016). Monras (2015b) identifies a substantial negative δw

1 (insignificantly different from one-
for-one) using annual variation - in the year following the Mexican Peso crisis of 1995. But he estimates
a small effect for a longer decadal interval.
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different elasticities of substitution. In Table 9, I present estimates of δw
1 in (37) for four

different education-based25 “skill” delineations: (i) college graduates / non-graduates; (ii)

at least one year of college / no college (see Monras, 2015b); (iii) high school dropouts /

all others (Card, 2005; Cortes, 2008); (iv) four groups: dropouts, high school graduates,

some college and college graduates (e.g. Borjas, 2006).

[Table 9 here]

To explore the role of cohort effects, I also present estimates using both pooled census

cross-sections and (to isolate an impact on internal mobility) a longitudinal dimension of

the census: respondents were asked where they lived five years previously. This question,

previously exploited by Card (2001) and Borjas (2006), is available in the 1980, 1990 and

2000 census extracts, yielding information on migratory flows over 1975-1980, 1985-1990

and 1995-2000.26 To preserve comparability, I restrict the pooled cross-section sample to

the same three decades: the 1970s, 1980s and 1990s.

For the purposes of the longitudinal estimates, I continue to define λ̂I
srt and λ̂F

srt

according to (38) and (39), but time intervals are now five years: so LF
srt is the stock of

migrants who arrived in the US within the previous five years; and the initial population

Lsrt−1 is constructed using information on where current census respondents lived five

years previously. As a result, the residual contribution λ̂I
srt will not account for emigration

from the US. But to the extent that emigration is a response to an individual’s local

economic environment, my estimate should then understate any crowding out effect.

In an effort to exclude skill-specific local demand shocks (αsrt in the model), I instru-

ment the foreign inflow λ̂F
srt in (37) using a skill-specific migrant shift-share - following

the methodology of Card (2001). Building on equation (32) above:

µ̂srt = log

(

Lsrt−1 +
∑

o φ
o
rt−1L

F
os(−r)t

Lsrt−1

)

(41)

where new migrants of origin o and skill s are allocated proportionately according to

the initial co-patriot geographical distribution. Again, for the longitudinal specification,

the pre-period relates to five years previously, and µ̂srt is constructed to predict the

contribution of new migrants to the CZ-skill cell over five years (rather than a decade).

As is clear from columns 1 and 4, µ̂srt is a strong instrument in all specifications.

25A key drawback of the education classifications is occupational downgrading of migrants. Card (2001)
addresses this concern by probabilistically assigning individuals to broad occupation groups (conditional
on education and demographic characteristics), separately for natives and migrants. I offer estimates
using these imputed occupation groups in Appendix I.

26Previous residence is only classified by state in the 1970 census microdata, and the ACS (after 2000)
only reports place of residence 12 months previously. See Appendix B.4 for further data details. I exploit
this same census question to disaggregate the contributions of inflows and outflows to the aggregate-level
crowding out effect in Appendix E.4.
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The pooled cross-section estimates of δw
1 are remarkably large, ranging from 1 to 1.5 for

the full residual contribution in column 2 (accounting for both natives and old migrants).

That is, each new foreign migrant in a given CZ-skill cell attracts an additional 1-1.5

workers to the same cell (relative to other cells). A comparison with column 3 reveals

that these positive effects are (more than) entirely driven by natives.

In contrast, the longitudinal estimates of δw
1 in column 5 are universally negative.

They also vary considerably in magnitude, ranging from -3.6 for the college graduate/non-

graduate delineation to just -0.19 for the four-group delineation. In most cases, natives

contribute substantially to these effects (column 6). The model offers a rationale for

this variation: finer delineations (such as the four-group) should engender greater substi-

tutability in production (i.e. larger σ) and consequently lower estimates of δw
1 . Also, if

high school dropouts are close substitutes with other non-college workers (see e.g. Card,

2009a), the relatively low δw
1 in the third row (-0.43) is perhaps understandable. Using

identical longitudinal data (from the 1990 census), Card (2001) estimates a δw
1 which

is somewhat positive. In Appendix I, I find the divergence of our estimates is mostly

explained by the choice of right hand side controls and geographical sample.27

6.3 Cohort effects

The difference between the pooled cross-section and longitudinal estimates is suggestive

of large cohort effects. In Appendix G, I offer more direct evidence for cohort effects by

exploiting census information on individuals’ state of birth. Specifically, using the same

estimating equation (37), I show that foreign inflows to a given state exert a larger impact

on the education composition of natives born in that state than on those residing in it.

As an example, consider a CZ which receives an inflow of low educated immigrants.

Despite large geographical crowd-out of low educated natives, the native college share

will typically contract relative to elsewhere. This is because the crowding out effect is

more than offset by a decline in the education levels of local birth cohorts.

At first sight, these cohort effects may appear counterintuitive. Low-skilled immigra-

tion should raise the return to education and stimulate greater investment (see Hunt,

2017). But the effect could in principle go the other way: Llull (2017) argues a fall in

wages may discourage labor market attachment and the accumulation of human capital.

27Card controls for a range of demographic means at time t−5 within the skill-area cells (age, education,
migrants’ years in US), and he restricts his sample to the top 175 MSAs. Of course, the controls may
be picking up important skill-specific shocks which I have neglected; and similarly, there may be good
reasons to prefer his MSA restriction. The purpose of Appendix I is merely to show how our results can
be reconciled.
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7 Conclusion

The US suffers from large and persistent regional disparities in employment rates. It is

often claimed that foreign migration offers a remedy: given that new migrants are more

mobile geographically, they “grease the wheels” of the labor market and accelerate local

adjustment (Borjas, 2001). In terms of policy, if migrants are indeed regionally flexible,

forcibly dispersing them within receiving countries may actually hurt natives as well as

the migrants themselves.

Building on important work by Cadena and Kovak (2016), I find that new foreign

migrants account for 30 to 60 percent of the local population response to Bartik-identified

employment shocks. However, I find that population growth is not significantly larger

in areas better supplied by new migrants, nor more responsive to these shocks. This

is fundamentally a story of “crowding out”: I estimate that new foreign migrants to

commuting zones crowd out existing US residents one-for-one. This effect is entirely

driven by a reduction in migratory inflows, rather than larger outflows. The crowding

out result does conflict with some of the existing literature, but I attempt to show how

these estimates can be reconciled. The magnitude of the effect is certainly puzzling, given

sluggishness in the migratory response to demand shocks, as well as the adverse effect

of foreign inflows on local employment rates. However, undercoverage of unauthorized

migrants in the census may be overstating the crowding out effect - and understating the

foreign contribution to local adjustment.

Methodologically, I offer tools to identify the local impact of migration shocks in

the context of local dynamics. Building on Pischke and Velling (1997) and Amior and

Manning (2018), I account for an area’s initial conditions using the lagged employment

rate, which (new to this paper) I adjust for local demographic composition. And I

present empirical evidence that this sufficient statistic approach can help address some

of the principal threats to identification discussed in the migration literature.
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A Theoretical extensions and derivations

A.1 Expressing γI in terms of flow elasticities

The parameter γI in (7) is the elasticity of the stock of existing local residents, while γF

in (8) is the elasticity of the flow from abroad. Here, I offer a brief sketch of how γI

can itself be expressed in terms of flow elasticities. Suppose there are individuals moving

both to and from area r even in the absence of local utility differentials, due perhaps to

idiosyncratic amenity or job shocks. Let λIi
r and λIo

r denote the contributions to local

population growth from internal inflows and outflows respectively, where the net inflow

λI
r is equal to λIi

r − λIo
r . In steady-state, i.e. in the absence of local utility differentials,

suppose these are both equal to µI
r. And suppose also that the response of these inflows

and outflows takes the same form as (8), so:

λIi
r − µI

r

µI
r

= γIi (nr − lr − zsa
r ) (A1)

and
λIo

r − µI
r

µI
r

= −γIo (nr − lr − zsa
r ) (A2)

It then follows that:

λI
r = µI

r

(

γIi + γIo
)

(nr − lr − zsa
r ) (A3)

And thus, γI in (7) can be expressed as µI
r

(

γIi + γIo
)

, where γIi and γIo are the elasticities

of the internal flows (both in and out), and µI
r is the steady-state rate of internal in- (and

out-) migration. The empirical evidence suggests the internal population response to

local differentials is largely driven by γIi rather than γIo: see Appendix E.4.

A.2 Moving to discrete time: Derivations of (11), (12) and (13)

I first show how equation (9) can be discretized to yield (11), following similar steps

to Amior and Manning (2018). I assume local migrant intensity µr is constant within

discrete time intervals, and I denote µrt as the migrant intensity in the interval (t− 1, t].

Similarly, γrt is the aggregate elasticity in area r in the interval (t− 1, t], where:

γrt = γI + γFµrt (A4)

Now, let xr (τ) denote the value of some variable x in area r at time τ . Notice that (9)

can be written as:

∂eγrttlr (τ)

∂τ
|τ=t = eγrttµrt + γrte

γrtt [nr (t) − zsa
r (t)] (A5)
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This has as a solution:

eγrttlr (t) = lr (t− 1) +
∫ t

t−1
eγrtτ [µrt + γrtnr (τ) − γrtz

τa
r (τ)] dτ (A6)

Rearranging:

lr (t) − lr (t− 1) =
∫ t

t−1
e−γrt(t−τ) [µrt + γrtnr (τ) − γrtnr (t− 1) − γrtz

τa
r (τ)] dτ

+
(

1 − e−γrtt
)

[nr (t− 1) − lr (t− 1)] (A7)

and again:

lr (t) − lr (t− 1) =
∫ t

t−1
e−γrt(t−τ)dτ · µrt + [nr (t) − nr (t− 1)] (A8)

− [zsa
r (t) − zsa

r (t− 1)] −
∫ t

t−1
eγrt(τ−t) [ṅr (τ) − żsa

r (τ)] dτ

+
(

1 − e−γrtt
)

[nr (t− 1) − lr (t− 1) − zsa
r (t− 1)]

Assuming employment nr and the supply/amenity shifter zsa
r change at a constant rate

over the interval, this yields:

lr (t) − lr (t− 1) =

(

1 − e−γrt

γrt

)

µrt (A9)

+

(

1 −
1 − e−γrt

γrt

)

[nr (t) − nr (t− 1) − zsa
r (t) + zsa

r (t− 1)]

+
(

1 − e−γrtt
)

[nr (t− 1) − lr (t− 1) − zsa
r (t− 1)]

which is (11).

I now derive discrete-time formulations of the foreign and internal contributions to

local population change, i.e. λF
rt and λI

rt respectively. I begin by substituting (9) for

(nr − lr − zsa
r ) in (8). This yields:

λF
r (τ) = µrt +

γFµrt

γ
[dlr (τ) − µrt] (A10)

for τ ∈ (t− 1, t]. Integrating this expression between t− 1 and t then gives:

λF
rt = µrt +

γFµrt

γ
(∆lrt − µrt) (A11)

where λF
rt ≡

∫ t
t−1 λ

F
rt (τ) dτ is the foreign contribution over the interval. Equation (12) can

then be derived by substituting (11) for the aggregate population change ∆lrt.

One can follow an identical procedure for the internal contribution. Substituting (9)

for (nr − lr − zsa
r ) in (7):
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λI
r (τ) =

γI

γ
[dlr (τ) − µrt] (A12)

for τ ∈ (t− 1, t]. Then, integrating between t− 1 and t:

λI
rt =

γI

γ
(∆lrt − µrt) (A13)

and equation (13) follows after substituting (11) for ∆lrt.

A.3 Population responses to µrt: Derivations of (14) and (15)

It is useful to begin by characterizing (12) and (13) as functions of µrt. Replacing the

aggregate elasticity γrt with γI + γFµrt:

fF (µrt) = µrt +
γFµrt

γI + γFµrt

(

1 −
1 − e−γI

−γF µrt

γI + γFµrt

)

(∆nrt − ∆zs
rt − µrt) (A14)

+
γFµrt

γI + γFµrt

(

1 − e−γI
−γF µrt

) (

nt−1 − lt−1 − zs
rt−1

)

and

fI (µrt) =
γI

γI + γFµrt

(

1 −
1 − e−γI

−γF µrt

γI + γFµrt

)

(∆nrt − ∆zs
rt − µrt) (A15)

+
γI

γI + γFµrt

(

1 − e−γI
−γF µrt

) (

nt−1 − lt−1 − zs
rt−1

)

which summarize the foreign and internal contributions to local population growth re-

spectively. Taking first order approximations of these functions around µrt = 0:

fF (µrt) ≈ fF (0) + µrtf
′

F (0) (A16)

and

fI (µrt) ≈ fI (0) + µrtf
′

I (0) (A17)

which yield equations (14) and (15) in the main text.

A.4 Housing market specification: Derivation of (19)

Given the sufficient statistic result (which allows me to focus exclusively on stocks rather

than prices), a formal specification of the housing market is not required to derive most

of the population adjustment equations in Section 2. However, such a specification is

necessary to derive the “unconditional” crowding out equation (20), and I offer a tractable

version here.
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Suppose workers have Cobb-Douglas preferences over the traded good and housing,

so they spend a fixed fraction ν of their income on housing. See Davis and Ortalo-Magne

(2011) for empirical evidence in support of this assumption. This implies a simple linear

expression for the local price index:

prt = νph
rt + (1 − ν) pt (A18)

For simplicity, I assume non-employed individuals receive no income. Housing demand

in area r can then be written as:

Hd
rt = ν

WrtNrt

P h
rt

(A19)

and in logarithms:

hd
rt = log ν + wrt + nrt − ph

rt (A20)

I now turn to housing supply. Again for simplicity, I assume housing production does not

depend on local labor, but see the Online Appendices of Amior and Manning (2018) for

such an extension. Suppose housing supply can be written as:

hs
rt = ǫhs

(

ph
rt − pt

)

(A21)

Equating supply and demand, and substituting (A18) for ph
rt:

prt − pt =
ν

1 − ν + ǫhs

[

log ν +
1

ǫs
(nrt − lrt − zs

rt) + nrt

]

(A22)

Taking first differences then yields equation (19) in the main text:

∆ (prt − pt) =
1

κ

[

1

ǫs
(∆nrt − ∆lrt − ∆zs

rt) + ∆nrt

]

(A23)

where

κ ≡
1 − ν + ǫhs

r

ν
(A24)

is increasing in the elasticity of housing supply.

A.5 Semi-structural equations: Derivations of (18), (20) and (22)

Following the procedure outlined in Appendix A.2, (17) can be discretized to yield:

∆lrt = λF
rt +

(

1 −
1 − e−γI

γI

)

(

∆nrt − λF
rt − ∆zsa

rt

)

+
(

1 − e−γI
) (

nrt−1 − lrt−1 − zsa
rt−1

)

(A25)
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Equation (18) then follows after subtracting the foreign contribution λF
rt on both sides:

λI
rt =

(

1 −
1 − e−γI

γI

)

(

∆nrt − λF
rt − ∆zsa

rt

)

+
(

1 − e−γI
) (

nrt−1 − lrt−1 − zsa
rt−1

)

(A26)

I now turn to the “unconditional” crowding out specification, (20). This requires a

solution for local employment. Using the labor supply and demand curves, (2) and (3),

changes in local employment can be expressed as:

∆nrt =
ǫs

ǫs + ǫd
∆zd

rt +
ǫd

ǫs + ǫd
(∆lrt + ∆zs

rt) −
ǫsǫd

ǫs + ǫd
∆ (prt − pt) (A27)

Replacing the local price deviation ∆ (prt − pt) with (A23):

∆nrt = η
κ

κ+ ǫd
∆zd

rt + (1 − η) (∆lrt + ∆zs
rt) (A28)

and disaggregating local population growth ∆lrt into foreign and internal contributions:

∆nrt = η
κ

κ+ ǫd
∆zd

rt + (1 − η)
(

λF
rt + λI

rt + ∆zs
rt

)

(A29)

where

η ≡

(

1 +
κ + 1

κ+ ǫd
·
ǫd

ǫs

)

−1

(A30)

Equation (20) can then be derived by substituting (A29) for ∆nrt in (A26).

To derive the response of the local employment rate ∆ (nrt − lrt), I first subtract ∆lrt

from (A29):

∆ (nrt − lrt) = η
κ

κ+ ǫd
∆zd

rt + (1 − η) ∆zs
rt − η

(

λF
rt + λI

rt

)

(A31)

where I have again disaggregated ∆lrt into λI
rt and λF

rt. Equation (22) then follows after

substituting (20) for λI
rt.

A.6 Derivation of within-area empirical specification

In this appendix, I show how the multi-skill model described in Section 6.1 can be mapped

onto the empirical specification (37), accounting for skill-specific population dynamics.

In line with (2) in Section 2, I first write a skill-specific equation for labor supply:

nsr = lsr + ǫs (wsr − pr) + zs
sr (A32)

Similarly, I rewrite indirect utility (4) for skill group s. This depends on the skill-specific

amenity value and real consumption wage, which itself can be replaced with the employ-
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ment rate using (A32)

vsr = wsr − pr + asr (A33)

=
1

ǫs
(nsr − lsr − zs

sr) + asr

Notice that local labor market conditions for skill group s can be fully summarized by

the skill-specific employment rate (nsr − lsr): this is a skill-specific version of the suffi-

cient statistic result in Section 2. Skill s subscripts can also be applied to the dynamic

population responses, equations (7) and (8). That is, skill population adjusts (sluggishly)

with elasticities γI and γF to skill-specific differentials in local utility vsr. For simplicity,

I assume here that the elasticities γI and γF are common to all skill groups, but I permit

skill heterogeneity in the migrant intensity µsr:

λI
sr = γI (nsr − lsr − zs

sr + asr) (A34)

λF
sr − µsr

µsr

= γF (nsr − lsr − zs
sr + asr) (A35)

By symmetry with the model in Section 2, these equations can be discretized to yield a

skill-specific version of (18):

λI
srt =

(

1 −
1 − e−γI

γI

)

(

∆nsrt − λF
srt − ∆zs

srt + ∆asrt

)

(A36)

+
(

1 − e−γI
) (

nsrt−1 − lsrt−1 − zs
srt−1 + asrt−1

)

To derive the unconditional crowding out effect, I require a solution for local skill-specific

employment ∆nsrt. Given (A32) and the skill demand relationship in (40), this can be

characterized as:

∆nsrt =
ǫs

1 + ǫs (1 − σ)

(

∆ logαsrt +
σ

ρ
∆ logψrt +

ρ− σ

ρ
∆yrt − ∆prt + ∆pt

)

+
1

1 + ǫs (1 − σ)
(∆lsrt + ∆zs

srt) (A37)

Substituting this for ∆nsrt in (A36), this yields:

λI
srt =

(

γI

1−e−γI − 1
)

ζ

1 +
(

γI

1−e−γI − 1
)

ζ

(

1

1 − σ
∆ logαsrt − λF

srt − ∆zs
srt +

1

ζ
∆asrt

)

(A38)

+

(

γI

1−e−γI − 1
)

ζ

1 +
(

γI

1−e−γI − 1
)

ζ
·

1

1 − σ

(

σ

ρ
∆ logψrt +

ρ− σ

ρ
∆yrt − ∆prt + ∆pt

)

+
γI

1 +
(

γI

1−e−γI − 1
)

ζ

(

nsrt−1 − lsrt−1 − zs
srt−1 + asrt−1

)
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where

ζ ≡
ǫs (1 − σ)

1 + ǫs (1 − σ)
(A39)

Now consider how this maps onto the within-area empirical specification (37). The area-

time fixed effects drt will absorb the contents of the second line of (A38). The skill-time

fixed effects dst will absorb any skill-time varying components of the skill-specific demand

shock ∆ logαsrt, skill-specific supply shock ∆zs
srt, skill-specific amenity shock ∆asrt and

the initial conditions on the final line of (37). All remaining variation will fall into the

error term εsrt, so the IV exclusion restriction requires that it is uncorrelated with the

skill-specific migrant shift-share µ̂srt. Under these conditions (and the model’s various

assumptions), the coefficient of interest δw
1 will identify the coefficient on λF

srt in (A38):

δw
1 =

(

γI

1−e−γI − 1
)

ζ

1 +
(

γI

1−e−γI − 1
)

ζ
(A40)

As I state in Section 6.1, δw
1 is increasing in the internal mobility response γI , but de-

creasing in the elasticity of substitution σ between skill types in production.

B Data manipulation

B.1 Population

I take local population counts of individuals aged 16-64 from published county-level cen-

sus statistics (based on 100 percent samples), extracted from the National Historical

Geographic Information System (NHGIS: Manson et al., 2017). See Table A1 of the

Online Appendix of Amior and Manning (2018) for table references. Commuting Zones

(CZs) are composed of groups of counties, in line with Tolbert and Sizer (1996). Like

Amior and Manning (2018), I make one modification to the Tolbert-Sizer scheme to fa-

cilitate construction of consistent geographies over time: I move La Paz County (AZ) to

the same CZ as Yuma County (AZ). These counties only separated in 1983, but Tolbert

and Sizer’s 1990 scheme allocates them to different CZs.

Following Amior and Manning (2018), I disaggregate the total population of 16-64s

into native and foreign-born components using local shares computed from the Integrated

Public Use Microdata Series (IPUMS: Ruggles et al., 2017) microdata samples. I use

this procedure to compute local counts for other demographic cells also: specifically,

recent foreign-born arrivals (in the US for 10 years or less), longer term migrants, and

these in turn (together with the native-born) disaggregated by education. In practice,

the sub-state geographical identifiers included in the IPUMS microdata do not coincide

with CZ boundaries, and these identifiers vary by census year.28 Similarly to Autor and

28The 1940 and 1950 census extracts divide the continental US into 467 State Economic Areas, the
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Dorn (2013) and Autor, Dorn and Hanson (2013), I estimate population counts at the

intersection of the available geographical identifiers and CZs29, and I impute CZ-level

data using these counts as weights.

I use the following IPUMS samples for this exercise: the American Community Sur-

veys (ACS) of 2009, 2010 and 2011 (pooled together) for the 2010 cross-section; the 5 per

cent census extracts for 2000, 1990, 1980 and 1960; and the (pooled) forms 1 and 2 metro

samples of 1970 (each of which are 1 per cent extracts). Regarding 1970, information on

years in the US is only available in the form 1 sample.

B.2 Employment

Section 3.2 describes how I construct composition-adjusted local employment rates. Here,

I offer further detail on the specifics. I begin by running probit regressions of a binary em-

ployment indicator on a detailed set of individual characteristics and a full set of location

fixed effects, separately for each census cross-section (1960, 1970, 1980, 1990 and 2000)

and the pooled ACS cross-sections of 2009-11. The individual controls consist of: age

and age squared; four education indicators30, each interacted with age and age squared; a

gender dummy, interacted with all previously-mentioned variables; black/Asian/Hispanic

indicators, interacted with all previously-mentioned variables; and a foreign-born indica-

tor, interacted with all previously-mentioned variables. And finally, to the extent that

it is possible in each cross-section, I control for years in the US (among the foreign-

born), again interacted with all previously-mentioned variables. This information is not

consistently reported in each cross-section, so the variables I use vary by year:

ACS 2009-11: Years in US, years in US squared.

Census 2000: Years in US, years in US squared.

Census 1990: The census only reports years in US as a categorical variable. I

take the mid-point of each category (and its square), and I also include a dummy for

top-category cases.

1960 extract uses 2,287 “Mini” Public Use Microdata Areas (PUMAs), the 1970 extracts (the forms 1
and 2 metro samples) use 405 county groups, 1980 uses 1,148 county groups, 1990 uses 1,713 PUMAs,
and the 2000 census extract and American Community Survey (until 2011) use 2,057 PUMAs.

29To this end, following Amior and Manning (2018), I use county-SEA lookup ta-
bles from IPUMS (https://usa.ipums.org/usa/resources/volii/ sea_county_components.xls)
for 1940 and 1950; and I use county group lookup tables from IPUMS
for 1970 and 1980 (https://usa.ipums.org/usa/resources/volii/1970cgcc.xls and
https://usa.ipums.org/usa/resources/volii/cg98stat.xls). For 1960, I have relied on a preliminary
lookup table linking Mini PUMAs to counties (with population counts at the intersections),
kindly shared by Joe Grover at IPUMS. And for the 1990 and 2000 PUMAs, I have generated
population counts using the MABLE/Geocorr applications at the Missouri Census Data Center:
http://mcdc.missouri.edu/websas/geocorr_index.shtml.

30High school graduate (12 years of education), some college education (1 to 3 years of college),
undergraduate degree (4 years of college) and postgraduate degree (more than 4 years of college). High
school dropouts (less than 12 years of education) are the omitted category.
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Census 1980: Same as 1990. Except those who were citizens at birth do not report

years in US: I code all these cases with a dummy variable.

Census 1970: Same as 1980. Except some respondents do not report years in US:

I code all these non-response cases with a dummy variable. I also include an additional

binary indicator for migrants who report living abroad five years previously (based on a

different census question), which is available for the full sample.

Census 1960: No information on years in US is available.

All these variables (relating to years in US) are interacted with all previously-mentioned

variables in the probit specification. For the 1970 specification, I exclude foreign-born

individuals in the form 2 sample, since these do not report years in the US.

Regarding the location fixed effects, I include indicators for the local geographies

available in each census year (see Section B.1) in the probit regressions. Using the probit

output, I then predict the average employment rate in each local area - for a distribu-

tion of local demographic characteristics identical to the full national sample. I then

impute composition-adjusted employment rates at the CZ level by taking weighted aver-

ages (across the available geographical units), using the population weights described in

Section B.1. These are demanding specifications: to reduce the number of fixed effects in

the probit regressions as much as possible, I aggregate together geographical units which

are subsumed within the same CZs.

B.3 Shift-share instruments

I construct the Bartik industry shift-shares in identical fashion to Amior and Manning

(2018). The sample is based on employed individuals aged 16-64 in the IPUMS census

extracts and ACS samples. I identify industries using the IPUMS consistent classification

based on the 1950 census scheme31, aggregated to the 2-digit level32 (yielding 57 codes).

As with the population counts (see above), I impute CZ-level employment counts (by

industry) by weighting data from the corresponding sub-state geographical identifiers.

Similarly, in the construction of the migrant shift-share µ̂rt, I impute CZ-level migrant

population counts (across 77 origin countries) by weighting across these same identifiers.

A key input to µ̂rt is the number of new migrants (by origin o) arriving in the US in the

previous ten years (and residing outside area r): i.e. LF
o(−r)t in equation (32) in Section

3.3. This information is available in all census years from 1970 inclusive, thus covering

foreign inflows from the 1960s onwards. However, in some empirical specifications, I

require values of µ̂rt for 1960 (covering the 1950s inflow). For that decade, I impute

foreign inflows using cohort changes: I compute the difference between (i) the stock of

31See https://usa.ipums.org/usa/volii/occ_ind.shtml.
32I further aggregate all wholesale sectors to a single category to address inconsistencies between census

extracts, and similarly for public administration and finance/insurance/real estate. I also omit the “Not
specified manufacturing industries” code.
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migrants of origin o in 1960 (outside area r) and (ii) the stock of migrants of origin o in

1950 aged 6-54 (again, outside r).

B.4 Longitudinal information on place of residence

In Section 6.2, I exploit longitudinal residential information in the 1980, 1990 and 2000

IPUMS census microdata to estimate δw
1 in equation (37). These census years include

data on respondents’ place of residence five years previously, using various sub-state

geographical identifiers.33 I compute population (both current and 5-year historical) in

the various cells of interest (native, foreign-born, recent foreign arrival, by education

category) at the level of the available geographical identifiers. And I impute CZ-level

data by taking weighted averages of these, using the population weights described in

footnote 29.

C Effect of years in US on long-distance mobility

In this appendix, I offer some evidence on the gross mobility of natives and migrants

within the US, based on American Community Survey (ACS) samples between 2000 and

2016. 2.8 percent of native-born individuals aged 16-64 report living in a different state

12 months previously (conditional on living in the US at that time), compared to 2.4

percent of the foreign born.34 However, the foreign-born share masks some important

heterogeneity by years in the US. In what follows, I show that new migrants are in fact

more mobile across states than natives, but this differential is eliminated within five years.

To identify the effect of years in the US, it is important to control for entry co-

hort effects (Borjas, 1985) and observation year effects. To control for these, I estimate

complementary log-log models for the annual incidence of cross-state migration (see e.g.

Amior, 2017a). Let MigRate (Xi) denote the instantaneous cross-state migration rate

conditional on a vector of individual characteristics Xi. An individual i moves between

states over a time horizon τ with probability:

Pr (Migτ
i = 1) = 1 − exp (−MigRate (Xi) τ) (A41)

33See also footnote 28. The 1980 census extract identifies both current and historical residence in
the continental US using the same 1,148 county groups. The 1990 extract identifies current residence
using 1,713 Public Use Microdata Areas (PUMAs) and historical residence using 1,139 areas (PUMAs or
PUMA combinations). In 2000, current residence is classified by 2,057 PUMAs and historical residence
by 1,017 PUMAs or PUMA combinations. For 1990 and 2000, I conduct my analysis at the higher level
of aggregation.

34As an aside, a larger share of foreign-born individuals (2.9 percent) report living abroad one year
ago.
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This gives rise to a complementary log-log model:

Pr (Migτ
i = 1) = 1 − exp (− exp (π′Xi) τ) (A42)

where the π parameters (to be estimated) are the elasticities of the instantaneous migra-

tion rate MigRate (Xi) with respect to the characteristics in Xi. Assuming a constant

hazard, this interpretation of the π parameters is independent of the time horizon τ as-

sociated with the data. I define a cross-state migrant as somebody living in a different

state 12 months previously (as reported by the ACS), so I implicitly normalize τ to one

year. The Xi vector includes the following variables:

π′Xi =
20
∑

k=1

πY RS
k Y rsUSk +

2015
∑

k=1981

πY RI
k Y rImmigk +

2016
∑

k=2001

πY RI
k Y rObsk (A43)

The sample for this exercise consists of (1) natives aged 16-64 living in the US one

year previously (22.6m observations) and (2) foreign-born individuals aged 16-64 with

between 1 and 20 years in the US (2.2m). Thus, there are 21 demographic groups:

natives, migrants with 1 years in US, migrants with 2 years, ..., migrants with 20 years.

I include in the Xi vector binary indicators for the final 20 groups, i.e. Y rsUSk for k

between 1 and 20, so natives are the omitted category. I also control for a full set of entry

cohort effects, Y rImmigk (ranging from 1981 to 2015 in my sample, with natives again

the omitted category), and a full set of observation year effects, Y rObsk. I assume here

that the observation year effects are common to natives and migrants.

Panel A of Figure A1 reports the basic coefficient estimates on the years in US dum-

mies, together with the 95 percent confidence intervals. The estimates can be interpreted

as the log point difference in cross-state mobility between migrants (with given years in

US) and natives, controlling for entry cohort and observation year effects. Migrants are

initially more mobile than natives: the deviation at the entry year is 93 log points. But

this falls to zero by year 6 and becomes negative thereafter, dropping to -49 log points

by year 20.

[Figure A1 here]

In Panel B, I estimate the same empirical model, but this time controlling for a full

set of single-year age effects. Age effects are important here because individuals with

fewer years in the US will typically be younger, and the young are known to be more

mobile for other reasons (see e.g. Kennan and Walker, 2011). Thus, without age controls,

I am likely to overestimate mobility of new immigrants relative to natives. And indeed,

this is what the results suggest: the deviation at year 1 is now somewhat lower, at 68

log points. The gradient in Panel B is still negative, but shallower than Panel A: the

coefficient touches zero at year 5 and reaches -31 log points by year 20.
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D Supplementary estimates of contributions to local

adjustment

D.1 Robustness to specification

In Tables A1, A2 and A3, I study the robustness of my IV estimates of the foreign

contribution to local adjustment - both the average contributions (in columns 1-4 of

each table) and heterogeneity in these contributions along the support of the migrant

shift-share (columns 5-8), together with the associated internal population responses.

[Table A1 here]

Table A1 focuses on the robustness to specification choices. For reference, Panel A

reproduces the estimates from the main text: i.e. the average contributions in columns

5-8 of Table 1 (without the migrant shift-share control, µ̂rt) and the heterogeneous con-

tributions in columns 5-8 of Table 3. In Panel B, in an effort to account for time-invariant

unobserved components of supply/amenity effects in ∆zsa
rt and zsa

rt−1 in equation (11), I

control for CZ fixed effects - which effectively partial out CZ-specific linear trends in pop-

ulation. The aggregate population response is larger, at least to the lagged employment

rate (column 1); but the average foreign contribution to this response is almost entirely

eliminated (column 2). This is perhaps to be expected: the fixed effects pick up much of

the same variation as the migrant shift-share µ̂rt (which is locally very persistent); and

Table 1 in the main text shows that controlling for µ̂rt also eliminates much of the foreign

contribution. Having said that, the heterogeneous effects in columns 5-8 are not substan-

tially affected: there remains a large foreign contribution in high-µ̂rt areas (though the

response to contemporaneous employment shocks is smaller), and this foreign contribu-

tion is fully crowded out by the residual contribution. It should be emphasized that this

is a very demanding specification, given the short panel length (just five periods) and the

four endogenous variables.

In Panel C of Table A1, I omit the lagged employment rate and its associated (lagged

Bartik) instrument - together with their interactions with the migrant intensity in columns

5-8. As one would expect (given serial correlation in the Bartik instrument), the response

to the contemporaneous employment change (column 1) is now larger. The difference is

substantial: compared to Panel A, the gap between the β1 coefficient (on the change in

current employment) and 1 (i.e. full adjustment) is halved. But the foreign contribution

(column 2) is similar in proportionate terms. And in columns 5-8, the foreign contribu-

tion continues to fully crowd out the internal contribution, at least in the response to

employment shocks (i.e. the “indirect” effect).
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Finally, Panel D uses raw instead of composition-adjusted employment variables, for

both the contemporaneous change and the lagged rate. The aggregate population re-

sponse in column 1 is now somewhat smaller. This result is intuitive. The local popula-

tion of better educated workers is known to respond more strongly (see e.g. Amior and

Manning, 2018), and these individuals also have higher employment rates. As a result,

the change in raw employment (on the right hand side) overstates the true change in

employment for an individual of fixed characteristics; and the population response to this

change must therefore be smaller. Despite this, the foreign contribution in column 2 is

similar in proportionate terms; and columns 5-8 show a similar crowding out effect. This

result should be reassuring: since adjusting local employment for observable characteris-

tics makes little difference to the results, one may be less concerned about the influence

of unobservables.

D.2 Robustness to amenity controls

In Table A2, I study the robustness of my estimates to the right hand side controls. In

Panel A, I control only for the full set of year effects - and exclude all amenity controls.

The aggregate population response (column 1) is similar to the main text, and the foreign

contribution (column 2) is proportionately larger - especially in response to the lagged

employment rate, where it actually exceeds the aggregate response. The coefficients

on the interaction terms in columns 5-8 continue to point to complete crowding out,

though the standard errors are now very large: the interactions effects are statistically

insignificant.

[Table A2 here]

The same is true of Panel B, where I control for the basic amenity effects - but omit

the interactions between the amenity effects and the local migrant intensity, µ̂rt. The

interactions with the employment effects in columns 5-8 are larger in magnitude, and the

standard errors are smaller - but the effects are still insignificant at the 5 percent level.

However, on the basis of the model in the main text, it is should be emphasized that the

omission of the amenity-µ̂rt controls is a misspecification: see equations (14), (15) and

(16).

Panel C controls additionally for the amenity-µ̂rt interactions. Columns 5-8 are now

identical to columns 5-8 of Table 3 in the main text. The foreign contribution to the

average response in column 2 is smaller than before. This reflects what happens in Table

1 in the main text when I control for migrant intensity µ̂rt.
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D.3 Robustness to sample and weights

In Table A3, I vary the sample and weighting. Until now, I have studied local heterogene-

ity along a linear migrant intensity µ̂rt effect: this follows the first order approximation

imposed in equation (14) in the model. But as I note in the main text, the µ̂rt distribu-

tion is very skewed: the 98th percentile is 0.1, and the maximum is 0.29. In Panel A, I

consider the implications of omitting observations with µ̂rt exceeding 0.1. As one would

expect, the average foreign contribution in column 2 is somewhat smaller - at least in

response to the lagged employment rate. But the heterogeneous effects in columns 5-8

are similar: we continue to see complete crowding out. This suggests the results are not

driven by a small number of outlying observations of µ̂rt, and the linear approximation

may not be so unreasonable.

[Table A3 here]

All the estimates in the main text are weighted by lagged population share. In Panel

B of Table A3, I study unweighted estimates. This places more emphasis on smaller

CZs which typically admit fewer foreign migrants. Unsurprisingly, the average foreign

contribution is now substantially lower. Column 6 shows the foreign contribution is

increasing with µ̂rt, but the effect is smaller than before. However, there is now no

crowding out effect in column 7. It turns out this result is driven by some small towns

close to the Mexican border with unusually large migrant intensity (which contribute

little to the weighted estimates). Once I exclude CZs with 1960 population (of 16-64s)

below 25,000 (which account for 2 percent of the national population), column 7 now

shows evidence of crowding out. And the crowding out effect becomes effectively one-

for-one once I exclude CZs with 1960 population below 50,000. This exclusion removes

the majority of CZs (387 out of 722), but these account for just 7 percent of the national

population.

D.4 Average contributions by country/region of origin

One may be interested in whether the large foreign contribution identified in the main text

is driven by migrants of particular origins. I address this question in Table A4. Column 1

reports the average foreign contribution (among all origins groups) - which is identical to

column 2 of Table 1 in the main text, based on the empirical specification (33). And in the

remaining columns, I replace the dependent variable with the (approximate) contribution

from various origin groups: specifically λ̂F o
rt ≡ log

(

Lrt−1+LF o
rt

Lrt−1

)

, where LF o
rt is the stock of

new migrants of origin o in area r at time t, who arrived in the US in the previous ten

years. Looking at the IV estimates, all the origin groups contribute significantly to the
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overall foreign response. And none particularly stand out, given the associated standard

errors and the shares of foreign migration reported in the penultimate row.

[Table A4 here]

E Supplementary estimates of crowding out

E.1 Graphical illustration of crowding out estimates

I now consider the robustness of my “semi-structural” crowding out estimates in Section

5. One concern is that my estimates of the coefficient of interest, δ1, in equation (35)

may be driven by outliers. To address this point, Figure A2 graphically illustrates the

basic OLS and IV estimates of δ1, i.e. those of columns 1 and 2 of Table 5.

[Figure A2 here]

These plots follow the logic of the Frisch-Waugh theorem. For OLS, I compute resid-

uals from regressions of both the residual and foreign contributions (λ̂I
rt and λ̂F

rt respec-

tively) on the remaining controls: the lagged employment rate, the current Bartik shift-

share, year effects and the amenity variables (interacted with year effects). And I then

plot the λ̂I
rt residuals against the λ̂F

rt residuals.

For the IV plot, I apply the Frisch-Waugh logic to two-stage least squares. I begin by

generating predictions of the two endogenous variables (the contribution of new migrants,

λ̂F
rt, and the lagged employment rate, ñrt−1 − lrt−1), based on the first stage regressions

(using the migrant shift-share µ̂rt and lagged Bartik brt−1 instruments). I then compute

residuals from regressions of both λ̂I
rt and the predicted λ̂F

rt on the remaining controls:

the predicted lagged employment rate, the current Bartik shift-share, year effects and the

amenity variables (interacted with year effects). And as before, I plot the λ̂I
rt residuals

against the λ̂F
rt residuals.

The marker size in the plots correspond to the lagged population share weights. The

(weighted) slopes of the fit lines are identical to the δ1 estimates in columns 1 and 2 in

Table 5. Note the standard errors (of course) do not match: I do not account for state

clustering in Figure A2; and for IV, the naive two stage estimator does not account for

sampling error in the first stage. In any case, it is clear from inspection that the δ1

estimates are not driven by outliers.
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E.2 Alternative IV strategies

The migrant shift-share instrument has faced a number of criticisms in the literature.

First, it may not successfully exclude shocks to local labor demand, especially if these

shocks are persistent. And second, if the migration shocks themselves are persistent, esti-

mated effects may be conflated with dynamic adjustment (see Jaeger, Ruist and Stuhler,

2018). Addressing these challenges has been a major focus of this paper. But there are

other possible concerns, and I attempt to address some of these in Table A5.

[Table A5 here]

Panel A offers estimates weighted by lagged population share, in line with the main

text. Column 1 reproduces the basic IV crowding out estimate in column 2 of Table 5,

based on equation (35). I instrument the foreign inflow λ̂F
rt using the migrant shift-share

µ̂rt and the lagged employment rate using a lagged Bartik. Panel B offers unweighted

estimates of δ1: the coefficient is not much different (-0.94 rather than -1.1), though the

standard error is somewhat larger. This suggests the effects are not merely driven by

large CZs, consistent with the patterns in Figure A2.

Recall the migrant shift-share instrument µ̂rt is given by log
(

Lrt−1+ΛF
rt−1

Lrt−1

)

, where

ΛF
rt−1 ≡

∑

o φ
o
rt−1L

F
o(−r)t is a shorthand for the predicted number of incoming migrants

between t − 1 and t: see equation (32). Notice I am using the t − 1 migrant settle-

ment patterns (in φo
rt−1) to predict foreign inflows in each subsequent decade. But other

studies have taken a different approach: for example, Hunt (2017) predicts inflows in all

decades from 1940 to 2010 using the 1940 settlement patterns. In column 2, I replace

my instrument with log
(

Lrt−1+ΛF 60

rt−1

Lrt−1

)

, where ΛF 60
rt−1 ≡

∑

o φ
o
r60L

F
o(−r)t predicts the migrant

inflow based on 1960 settlement patterns, φo
r60, for every decade. The weighted and un-

weighted estimates are now somewhat larger (-1.4 and -1.5 respectively), though they are

not significantly different from -1.

In my basic crowding out specification (35), I approximate the foreign and residual

contributions (to the change in log population) as log
(

Lrt−1+LF
rt

Lrt−1

)

and log
(

Lrt−LF
rt

Lrt−1

)

respec-

tively. But much of the literature has taken a first order approximation, defining them

as
LF

rt

Lrt−1

and
∆Lrt−LF

rt

Lrt−1

: see e.g. Card (2001), Peri and Sparber (2011) and Card and Peri

(2016). Column 3 re-estimates (35) using these definitions; and to maintain symmetry, I

replace the instrument with
ΛF

rt

Lrt−1

. But this makes little difference to the estimate.

Another possible concern is the predictive power of the instrument. Suppose the pre-

dicted number of incoming migrants, ΛF
rt, is largely noise. Then variation in Lrt−1 may

generate artificial positive correlation between the endogenous variable and the instru-

ment. This problem becomes worse if the LF
rt component of the endogenous variable,

LF
rt

Lrt−1

, is itself also noisy. Indeed, Aydemir and Borjas (2011) argue that measurement

error in the local migrant share can result in substantial attenuation bias, especially in
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the presence of fixed effects (which may absorb much of the meaningful variation). To

address this concern, in column 4, I replace the instrument (which is expressed relative

to the initial population) with the predicted inflow of new migrants in levels, ΛF
rt. But

again, this has little effect on the crowding out estimate or even its standard error.

An important reference in this context is Wozniak and Murray (2012), who estimate

geographical crowd-out using a specification entirely expressed in levels. Building on

equation (35), a specification in levels would be:

∆Lrt − LF
rt = δ0 + δL

1 L
F
rt + δL

2 brt + δL
3 (ñrt−1 − lrt−1) + Artδ

L
A + εrt (A44)

where the dependent variable is the change in local population, less the stock of new

foreign migrants; and the key regressor LF
rt is simply the number of new foreign migrants.

I estimate δL
1 in column 5, yielding a coefficient on just -0.23 in Panel A. However,

local population is an important omitted variable in this specification (Wright, Ellis and

Reibel, 1997; Peri and Sparber, 2011; Wozniak and Murray, 2012): local population may

be correlated with both the inflow of new migrants and subsequent population change. To

address this concern, Wozniak and Murray recommend controlling for local fixed effects.

Once I include CZ fixed effects (column 6), my estimate of δL
1 is again remarkably close

to -1 irrespective of weighting.

In column 7, I apply CZ fixed effects directly to the basic specification in column

1. These effectively partial out CZ-specific linear trends in population. This approach

is similar in spirit to the double differencing methodology (comparing changes before

and after 1970) of Borjas, Freeman and Katz (1997) and is recommended by Hong and

McLaren (2015). In terms of theory, the purpose of the fixed effects is to account for time-

invariant unobserved components of the amenity, supply or demand effects in equation

(20). But as I emphasize in Section (D.1), their inclusion in empirically demanding in

such a short panel, especially given the strong persistence in the migrant shift-share

instrument µ̂rt. And as Aydemir and Borjas (2011) argue, measurement error may be

more of a problem here. With population weights, I estimate a δ1 of -0.63 with a very large

standard error (0.61). In column 8, to ease the demands of the specification, I replace

the lagged employment rate (i.e. the initial conditions) with historical shocks: a lagged

Bartik brt−1 (originally used as an instrument) and a lagged migrant shift-share µ̂rt−1.

I now estimate a much larger δ1: -1.35, with a standard error of just 0.26. Without

population weights, I attain perversely large estimates of δ1 (in excess of -2) in both

columns 7 and 8, though the standard errors are also large. However, the first stage F-

statistics for the foreign inflow λ̂F
rt are small in the unweighted specifications: about 6 in

each case. I do not report fixed effect estimates using the 1960-based migrant shift-share:

this instrument has no power under fixed effects.
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E.3 Robustness of native contribution

The final column of Table 7 studies the robustness of the native contribution to the

crowding out effect, assessing the importance of various right hand side controls. But

the estimates in this column mask some important heterogeneity across decades. To

address this point, Table A6 reproduces the first six columns of Table 7, but replacing

the dependent variable λ̂I
rt with the native-only contribution λ̂

I,N
rt .

[Table A6 here]

The general patterns are very similar to Table 7. Without any right hand side controls,

the crowding out effects vary substantially over time; but as the controls (both demand

and amenity effects) are progressively added, the crowding out estimates become more

substantial (close to or exceeding one-for-one) in almost every decade. There is one

important exception: the 2000s. Even with the full set of right hand side controls, the

response of the native contribution is effectively zero. This is despite the large crowding

out effect for the full residual contribution (i.e. natives and old migrants combined) in

the same decade in Table 7. In other words, previous migrants account for the entire δ1

effect in that decade. A natural explanation is large return migration of Mexicans in the

2000s (see e.g. Hanson, Liu and McIntosh, 2017), driven in part by the construction bust

and the Great Recession.

E.4 Contributions of inflows and outflows to crowding out

It turns out that the geographical crowd-out is entirely driven by a reduction in migratory

inflows to the affected CZ - rather than an increase in migratory outflows. And I present

the evidence in this appendix. Similarly to Section 6, I exploit the longitudinal dimension

of the census: respondents were asked where they were living five years previously. The

census publishes statistics on gross migratory flows between all county pairs. In line with

analysis in the Online Appendix of Amior and Manning (2018), I use data for the periods

1965-70, 1975-80, 1985-90 and 1995-2000, and I aggregate all flows to CZ level.35 The

flow data is available for individuals aged 15-64, rather than my usual 16-64 sample. One

might also use the microdata (as I do in Section 6.2), but the published statistics are

based on larger samples and require no geographical imputation.

My strategy is to re-estimate the crowding out equation (35), but replacing the foreign

and residual contributions to decadal population growth with 5-year flows. In particular,

35I thank Jack DeWaard for sharing the 1965-70 and 1975-80 flow data. I take the 1985-90 flow data
from the Socioeconomic Data and Application Center at Columbia University: see the P1 STP-28 tables
at http://sedac.ciesin.columbia.edu/data/set/acrp_enhance-migration-1990. I construct the 1995-2000
flows using the C2 A1 and B4 A1 tables on the Census 2000 Migration DVD (kindly made available by Kin
Koerber); see https://www.census.gov/population/www/cen2000/migration/mig_dvd.html. Comparable
data is not available for 2005-2010.
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my specification is:

λ̂I5
rt = δ0 + δ1λ̂

F 5
rt + δ2brt + δ3 (ñrt−10 − lrt−10) + ArtδA + εrt (A45)

where the t subscript now designates years, rather than decades (as in the main text),

and λ̂F 5
rt and λ̂I5

rt are respectively the 5-year foreign and internal contributions to the

change in log population. These are constructed in line with equations (24) and (25).

Specifically, λ̂F 5
rt ≡ log

(

Lrt−5+LF 5

rt

Lrt−5

)

, where LF 5
rt is the 5-year flow into area r from abroad,

and Lrt−5 is the local population at time t − 5 (based on census respondents’ reported

place of residence five years previously). And in turn, λ̂I
rt ≡ log

(

Lrt−5+LIi5

rt −LIo5

rt

Lrt−5

)

, where

LIi5
rt and LIo5

rt are respectively the 5-year inflows and outflows to/from others parts of the

US. Notice that, by construction, Lrt ≡ Lrt−5 +LF 5
rt +LIi5

rt −LIo5
rt . Given that the flows are

based on the reports of time t residents, individuals who emigrated from the US between

t− 5 and t are excluded from this data.

I do not observe employment outcomes between census years (i.e. at 5 year intervals),

so I choose to use the same right hand side variables as in equation (35): the decadal

Bartik shift-share brt (which predicts employment growth between t − 10 and t), the

employment rate lagged ten years, and the amenity controls. The mismatch in time

periods is not ideal, and one should keep this in mind when interpreting the estimates.

I report OLS and IV estimates in Table A7. I instrument λ̂F 5
rt using a five-year mi-

grant shift-share, constructed to predict the 5-year flow and based on migrant settlement

patterns in t− 5. I construct these settlement patterns using migrants’ reported histori-

cal residence in the census microdata of year t (i.e. following a similar procedure to the

longitudinal estimates of Section 6.2). I instrument the lagged employment rate using

the lagged decadal Bartik shift-share.

[Table A7 here]

The standard errors on the OLS estimates are too large to make definitive statements.

But the IV estimates tell a much clearer story. Column 4 reports the basic δ1 estimate,

based on equation (A45). This points to a large crowding out effect (-1.6), somewhat in

excess of one-for-one. In the next two columns, I disaggregate the effect into (approxi-

mate) contributions from internal inflows and outflows: column 5 replaces the dependent

variable with λ̂Ii5
rt ≡ log

(

Lrt−5+LIi5

rt

Lrt−5

)

; and column 6 replaces it with λ̂Io5
rt ≡ log

(

Lrt−5+LIo5

rt

Lrt−5

)

.

The crowding out effect is entirely driven by variation in inflows rather than outflows.

The effect on outflows is statistically insignificant.

E.5 State-level estimates of crowding out

In Section 5 of the main text, I have estimated the extent of geographical crowd-out

across specifically CZs. Interestingly, Borjas (2006) finds that the extent of crowd-out
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is smaller at higher-level geographical units, based on comparisons of estimates across

census divisions, states and metropolitan areas. The idea is intuitive: US residents are

less mobile across longer distances. In this appendix, I estimate crowding out effects

across states - but I still cannot reject one-for-one crowding out. However, given the loss

of variation in moving to state-level, the coefficients are less precisely estimated.

As before, I base my estimates on equation (35) in the main text, though I replace

the lagged employment rate control (nrt−1 − lrt−1) with a lagged Bartik shift-share brt−1

control. This is because I cannot successfully identify the lagged employment rate using

the lagged Bartik as an instrument in the state-level data. In line with my CZ estimates

(see Section 3.4), I control for state-level amenity effects: a binary indicator for a coastal

state (ocean or Great Lakes), maximum January temperature, maximum July tempera-

ture, mean July relative humidity, and log state-level population density in 1900. I also

control for year effects and a full set of interactions between the amenity variables and

year effects. My sample consists of five decadal observations of 49 geographical units: the

48 states of the continental US plus the District of Columbia.

[Table A8 here]

I present my results in Table A8. Using OLS, I estimate a δ1 of -0.67 (column 1). The

IV estimate in column 2 is -1.3, a little larger than the CZ-based estimate in Table 5 -

though the standard error is also larger. In column 3, I control additionally for the lagged

migrant shift-share µ̂rt−1. This picks up part of the negative impact of λ̂F
rt, though the

coefficient on λ̂F
rt remains close to -1. Columns 4-5 assess the effect of replacing the de-

pendent variable with its lag (as a test for pre-trends), based on the restricted 1970-2010

sample. As one would expect, the coefficient on µ̂rt−1 in column 5 now becomes much

larger (and more negative), though there is also a large positive effect of λ̂F
rt. The latter

point suggests some difficulty in disentangling the effects of the current and lagged mi-

grant shift-shares in the state-level data, though any bias arising from pre-trends appears

to go against my crowding out hypothesis.

The associated first stage estimates are presented in columns 6-8: the current migrant

shift-share µ̂rt is a strong instrument for λ̂F
rt in every specification.

F Impact of foreign inflows on other CZ outcomes

F.1 Education composition

In Section 5, I estimate the impact of foreign inflows (elicited by the migrant shift-share

instrument) on two aggregate CZ-level outcomes: population and employment rates.

The purpose of this appendix is to explore heterogeneity across demographic groups

(specifically education) and also to assess additional outcomes (wages and housing costs).
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I begin by studying the impact of foreign inflows on local education composition. To

this end, I replace the dependent variable of (35) with education group s population

changes (I use s for “skill”, for consistency with the notation in Section 6), but keeping

the right hand side identical:

∆lsrt = δ0s + δ1sλ̂
F
rt + δ2sbrt + δ3s (ñrt−1 − lrt−1) + ArtδAs + εsrt (A46)

Note that this specification estimates the education-specific outcomes of aggregate-level

shocks (the “pure spatial” approach in Dustmann, Schoenberg and Stuhler, 2016), in

contrast to equation (37) in Section 6 which exploits variation in shocks within CZs (the

“mixture approach”). There are two endogenous variables (the foreign inflows and lagged

employment rate), and I instrument these with the migrant shift-share and lagged Bartik

- as in Section 5.

The top row of Table A9 reports IV estimates of δ1s in (A46), estimated for all

individuals (aged 16-64) and separately for different education groups. And in the next

two rows, I disaggregate the change in education-specific population into its foreign and

residual contributions: that is, I re-estimate δ1s after replacing ∆lsrt in (A46) with λ̂F
srt

and λ̂I
srt respectively, as defined by equations (38) and (39) in the main text.

[Table A9 here]

It is useful to begin with the second row. The coefficient in the first column is 1 by

construction: the left hand and right hand side variables are identical. But the coefficients

are also close to 1 in the next two columns: 0.82 for college graduates and 1.03 for

non-graduates. Thus, the migrant shift-share instrument µ̂rt attracts an educationally

balanced group of new foreign migrants (in terms of the graduate share), relative to the

existing local population. The third row shows the residual contribution’s response is

negative and a little larger in each case. As a result, the response of local graduate

and non-graduate populations are both small and slightly negative (-0.26 and -0.15), so

the graduate share is little affected. Having said that, to the extent that new migrants

downgrade in occupation and that undercoverage is disproportionate among low educated

migrants, this may understate the labor market pressure on low educated natives.

The remaining columns study finer education groups. Among the non-graduate stock,

inflows bring an expansion of the local share of high school dropouts. The importance of

this for local outcomes will depend on the substitutability between high school dropouts

and graduates in production.36 It is also worth emphasizing (as I do in Section 6) that

education-specific residual contributions may reflect changes in the characteristics of local

birth cohorts and not just geographical mobility.

36See the debate between e.g. Ottaviano and Peri (2012) and Borjas, Grogger and Hanson (2012).
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F.2 Raw employment rates

In Panel B of Table A9, I replace the dependent variable of (A46) with the change

in raw native and migrant employment rates, i.e. without adjusting for demographic

composition.37 Again, the first column presents estimates for the full sample of individuals

(not disaggregated by education): -0.22 and -0.20 for natives and migrants respectively.

These are very similar to the effects on the composition-adjusted rates (-0.21 and -0.24):

see columns 1 and 6 of Table 8. This should be reassuring: given that adjusting local

employment rates for observable characteristics makes little difference, one may be less

concerned about the influence of unobservables.

The impact largely falls on lower educated individuals: for natives in particular, there

is no effect on those with college degrees. This suggests the minimal effect of foreign

inflows on the college graduate share (see first row of Table A9) may indeed understate

the labor market pressure on the low educated. Given this, it is perhaps surprising

that the residual response λ̂I
srt is similarly large across all education groups (third row).

One explanation is demographic disparities in the speed of local population adjustments:

see e.g. Bound and Holzer (2000); Wozniak (2010); Notowidigdo (2011). In particular,

using the same data as this paper, Amior and Manning (2018) show that the college

graduate population adjusts fully to local employment shocks within one decade; and

any sluggishness in the population response is due to lower educated individuals.

F.3 Wages and housing costs

The remaining rows of Table A9 explore the impact of foreign inflows on local wages and

housing costs. Given the (moderate) adverse effect on local employment rates, one would

expect a small negative effect on real consumption wages - based on the labor supply

relationship in equation (2). Unfortunately, local wage deflators are notoriously difficult

to construct (and typically rely on strong theoretical assumptions), especially for the

detailed geographies and long time series in my data: see e.g. Koo, Phillips and Sigalla

(2000), Albouy (2008) and Phillips and Daly (2010). Nevertheless, one can at least study

the effects on nominal wages and housing costs separately.

In line with Amior and Manning (2018), I use residualized indices of wages, housing

rents and housing prices. I compute hourly wages as the ratio of annual labor earnings to

the product of weeks worked and usual hours per week in the census and ACS microdata.

I restrict my wage sample to employees aged 16-64, excluding those in group quarters;

and I also exclude wage observations below the 1st and above the 99th percentiles within

each geographical unit in the microdata.38 For each census cross-section, I then regress

37In notation, I estimate the impact on ∆ (nrt − lrt) rather than ∆ (ñrt − lrt).
38See footnote 28 above.
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log hourly wages on a rich set of demographic controls39, and I compute the mean residual

within each geographical unit (for the nativity/education group of interest). I then impute

CZ-level wages by taking weighted averages across these units, using the population

weights described in Section B.1.

My housing sample consists of houses and apartments; I exclude farms, units with

over 10 acres of land, and units with commercial use. To construct the rental index, I

regress the monthly rents of privately rented units on a rich set of housing characteris-

tics40 (restricting attention to prices between the 1st and 99th percentiles, within each

geographical unit, from the sample), separately for each census cross-section. And I com-

pute the local mean of the residuals within each geographical unit. I residualize local

housing prices in the same way, though the sample is now restricted to owner-occupied

units. As with wages, I impute CZ-level housing cost measures by taking weighted av-

erages across the geographical units available in each microdata sample, again applying

the population weights from Section B.1.

In Panel C, I replace the dependent variable of (A46) with changes in the log resid-

ualized wage. Looking at the first column (covering the full sample), the impact on

native and migrant wages is close to zero and statistically insignificant. However, this

masks some heterogeneity: there is a small positive response for college graduates (an

elasticities of 0.17 for natives) and a smaller negative (but insignificant) effect among

the low educated. It is also worth noting that Card (2009b) and Gould (forthcoming)

identify positive effects of foreign inflows on local within-group wage inequality. On the

other hand, given the adverse effect on local employment rates, the wage effects among

non-graduates are perhaps difficult to interpret. It may be that the lowest paid workers

are selecting out of employment: see e.g. Card (2001) and Bratsberg and Raaum (2012).

Turning to housing costs, there is a positive but statistically insignificant effect on

both rents and prices (Panels D and E) for the full sample (column 1), with elasticities of

0.11 and 0.32 respectively. See also Saiz (2007), who finds positive effects of immigration

on local housing costs in the US. But to the extent that housing units are not perfect

substitutes within CZs (e.g. due to particular characteristics or neighborhoods), this

may mask part of the story. For example, Albouy and Zabek (2016) have recently doc-

umented growing inequality in housing prices within cities, driven mostly by changes in

the relative value of locations. This also relates to the “superstar city” story of Gyourko,

Mayer and Sinai (2013). To study this further, I compute the mean of local housing cost

residuals within native/migrant and education groups. Specifically, I define a household’s

39These are the same controls I use for adjusting local employment rates: age, age squared, five
education indicators, black/Asian/Hispanic indicators, gender, foreign-born status, and where available,
years in US and its square for migrants, together with a rich set of interactions. See Appendix B.2.

40Specifically, number of rooms (9 indicators) and bedrooms (6 indicators); an interaction between
number of rooms and bedrooms; building age (up to 9 indicators, depending on cross-section), presence
of kitchen, complete plumbing and condominium status; I also control for a house/apartment dummy,
together with interactions between this and all previously-mentioned variables.

62



education as that of its most educated member; and I define a household as a “migrant

household” if at least one of its members was born abroad. It turns out that the positive

response of local housing costs is mostly driven by better educated households: the elas-

ticities of rents and prices for college graduate households (column 2) are 0.26 and 0.63

respectively (and both are statistically significant). Of course, this may simply reflect an

improvement in these households’ housing characteristics (on unobservable dimensions),

but it may also reflect increasing prices of housing characteristics disproportionately con-

sumed by these households. To the extent the latter interpretation is true, one may not

be able to conclude that real consumption wages have grown for this group41 - despite

the improvement in nominal wages. And this would be consistent with the negligible

effect on college graduate employment rates. As an aside, the question here is somewhat

analogous to that posed by Moretti (2013) regarding variation across MSAs. He finds

that college graduates are increasingly concentrating in more costly cities, but the wel-

fare implications depend on whether they are doing so because of labor demand shocks

or preferences for unobserved local amenities.

Certainly, an analysis of the impact on real consumption wages is challenging - and

not least because it is difficult to construct credible local wage deflators. This underscores

the potential advantages of relying on changes in local employment rates, based on the

sufficient statistic result of Amior and Manning (2018).

G Cohort effects in within-area estimates

The difference between the pooled cross-section and longitudinal estimates in Section 6.2

is suggestive of large cohort effects, though perhaps not conclusively so. For example,

it could be that the disparity is driven by events in the initial five years of each decade

(excluded from the longitudinal sample).

In Table A10, I test for cohort effects more explicitly by exploiting information in the

census on natives’ state of birth. As a reference, the first three columns present again the

CZ-level pooled cross-section estimates of δw
1 in equation (37), identical to Table 9 in the

main text. Columns 4-6 then offer state-level estimates of δw
1 , again using pooled cross-

sections. My sample consists of 49 geographical units (the 48 states of the continental

US plus the District of Columbia) and three decadal observations (over 1970-2000, for

comparability with the estimates in Table 9). As with the CZ estimates, the first stage

(using the education-specific migrant shift-share instrument µ̂srt) has substantial power

for all education delineations. And the IV estimates of the native-only response (column

5) look very similar to the comparable estimates for CZs (column 3).

41This depends of course on the importance of housing rents and prices in local wage deflators: see
e.g. Albouy (2008) and Davis and Ortalo-Magne (2011).
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[Table A10 here]

Recall the dependent variable in column 5, λ̂I,N
srt , is the contribution of natives to

“skill” (in practice, education) s population growth among state r residents. In column

6, I now replace this with λ̂I,N
BP srt: the contribution of natives to skill s population growth

among those born (rather than residing) in state r. The column 6 estimate should now

proxy for the contribution of cohort effects to education composition in state r - though

given that one third of individuals live outside their state of birth, it should understate

any such effects. Remarkably, the effects are all larger than the state of residence estimate

in column 5 - and for the first two delineations, substantially so. In other words, foreign

inflows to a given state exert a larger impact on the education composition of natives

born in that state than on those residing in it. This suggests any contribution of internal

mobility to the δw
1 estimate in column 5 is more than fully offset by cohort effects.

H Reconciliation with Cadena and Kovak (2016)

H.1 Summary

In important work, Cadena and Kovak (2016) study the contribution of (specifically

Mexican) migrants to local labor market adjustment, exploiting variation in historical

settlement patterns. My paper builds on their contribution and implements a similar

identification strategy. But their results appear to diverge from mine in three ways.

First, Cadena and Kovak find that low educated natives contribute negligibly to local

adjustment - in contrast to Mexican-born workers. Second, they find that Mexicans

respond heavily even after arriving in the US - while in my paper, the migrant response

is entirely driven by new arrivals. And third, they find that Mexicans do not “crowd out”

the native population response, but rather, smooth local fluctuations in employment rates.

Based on the intuition from my model, notice that the final claim follows theoretically

from the first: migrants “grease the wheels” because the wheels are not already greased.

There are some important differences in empirical setting. Cadena and Kovak focus

on the contribution of specifically Mexican-born migrants between 2006 and 2010 (during

the Great Recession) across 94 Metropolitan Statistical Areas (MSAs).42 And they find

that Mexicans accelerate local adjustment specifically in the low skilled market (less than

college): college-educated natives do respond strongly to local demand. In contrast, my

focus is the overall contribution of all migrants to the aggregate labor market over a

broader period: 1960-2010.

Nevertheless, I show here that there are also differences in empirical specification

between our papers which can help bridge the gap. In what follows, I focus specifically

42Attention is restricted to MSAs with adult population exceeding 100,000, Mexican-born sample
exceeding 60, and non-zero samples for all other studied demographic groups.

64



on the elasticities of the native and migrant populations. Once I account for dynamics,

I find that the native population does respond strongly to local shocks.

H.2 Empirical model

Cadena and Kovak base their main analysis on the following specification:

∆lgr = ω0g + ω1gIndShockgr +XrωXg + εgr (A47)

See equation (1) of their paper, though I have altered notation to match my own. The

equation is estimated separately for nativity groups g: natives, Mexican migrants and

non-Mexican migrants. The dependent variable ∆lgr is the 2006-10 change in log local

population in a given nativity group, and IndShockgr is the contemporaneous within-

industry employment shock experienced by that group. This is the weighted average of

industry-specific employment changes:

IndShockgr ≡
∑

i

φi
gr∆nir (A48)

where the weights φi
gr are initial group-specific shares of local workers employed in in-

dustry i. I focus specifically on their Table 4: there, Cadena and Kovak instrument

IndShockgrt using a contemporaneous Bartik industry shift-share (common to all nativ-

ity groups), akin to that described in equation (31) in the main text. The coefficient

ω1g is interpreted as the group-specific elasticity of population to a local group-specific

demand shock. Two right-hand side controls are included in the vector Xr: the Mexican

population share in 2000 and indicators for MSAs in states that enacted anti-migrant

employment legislation. Like Cadena and Kovak, I weight all estimates using inverse

sample variances.

Notice the conceptual framework here is somewhat different to mine. My approach

is to study the overall population response to an aggregate-level shock, and I disaggre-

gate this response into the contributions from various groups (new migrants, natives, old

migrants). In contrast, equation (A47) estimates the elasticity of group-specific popula-

tion stocks to group-specific employment shocks. Cadena and Kovak estimate that ω1g is

statistically insignificant for low educated natives, but large and positive for equivalently

educated Mexican-born individuals. Given this, they argue that the aggregate low skilled

population will respond more strongly to a given employment shock in cities with larger

initial Mexican enclaves; and therefore, these cities will suffer weaker fluctuations in local

employment rates.

Beyond this broad conceptual point, there are also some differences in the empiri-

cal details. First, (A47) studies the response to a within-industry employment shock

IndShockgr, rather than a change in overall employment ∆ngr which accounts addi-
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tionally for between-industry shifts. Second, (A47) does not account for dynamics: in

particular, it does not control for the lagged employment rate. In principle, these dynam-

ics may be more consequential for the short 2006-2010 interval than the decadal intervals

in my own analysis. And third, Cadena and Kovak do not control for local amenity effects

such as climate.

H.3 Estimates

I explore the implications of these three specification features in Table A11, relying on

data and programs published alongside Cadena and Kovak’s article. I restrict attention

to low skilled workers (and specifically men) - who account for Cadena and Kovak’s

headline results. Columns 1-4 of Panel A of Table A11 replicate Panel A of Table 4 in

their paper. The response of low skilled natives to local demand shocks is negligible, while

the Mexican-born population responds heavily (with a one-for-one effect). The response

of non-Mexican migrants is large and negative, offsetting much of the Mexican response.

The overall population response (column 1) is positive but statistically insignificant.

[Table A11 here]

In Panel B, I replace the within-industry employment shock IndShockgr with a simple

change in (group-specific) log employment ∆ngr. The estimates are mostly unchanged,

except we now see a large positive response from non-Mexican migrants.

In Panel C, I control additionally for the lagged group-specific employment rate (i.e.

in 2006), which I instrument using a Bartik industry shift-share for 2000-6.43 The speci-

fication now has the form of an error correction model, regressing the change in (group-

specific) log population on the change in (group-specific) log employment and the lagged

(group-specific) log employment rate. The responses from the overall population (column

1) and natives (column 2) are now substantially larger - and it is not possible to statisti-

cally reject complete adjustment (i.e. coefficients of 1) over the period. Interestingly, the

native response now exceeds the overall population response - though the difference is

not statistically significant. The impact of controlling for dynamics is intuitive. As Ca-

dena and Kovak note, MSAs experiencing larger upturns before 2006 experienced larger

downturns thereafter. Thus, the small native response in the first row of Table A11 may

reflect a mixture between a (somewhat sluggish) response to a historic upturn and a

contemporaneous downturn.

The fit in columns 1 and 2 of Panel C appears remarkably good, given the small

sample of 94 MSAs - though this comes with the caveat of weak instruments. I report

the associated first stage estimates in Panels D and E, for the employment change and

43Cadena and Kovak construct this lagged Bartik for some robustness exercises in their own paper, so
I take it from their dataset.
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lagged employment rate respectively. In columns 1 and 2, each instrument has a strong

positive effect (with a small standard error) on its corresponding endogenous variable

- and no positive effect on the other. However, the Sanderson-Windmeijer (2016) F-

statistics (which account for multiple endogenous variables) are small: between 5 and 6

in each case. Identification is especially weak in columns 3 and 4 (Mexicans and other

migrants respectively), with F-statistics below 1; and furthermore, the instruments have

counterintuitive effects in these specifications.

In columns 5-8, I repeat the same regressions but controlling for the local amenity

effects described in Section 3 in the main text (using population allocations to map

CZ data to MSAs): climate, coastline, historical population and isolation. In Panel

A (without the dynamics), there is now a small positive response from natives. And

as before, the native response becomes larger once I control for dynamics, though the

standard errors are also much larger (and the first stage F-statistics much smaller).

I Reconciliation with Card (2001)

The seminal reference in the geographical crowding out literature is Card (2001). He

offers within-area estimates of crowding out, i.e. δw
1 in (37), but exploiting longitudinal

residential information in the US census (respondents were asked where they lived five

years previously: see Section 6.2). This approach should address possible concerns about

cohort effects, but he still estimates a positive value for δw
1 - with each new foreign migrant

to an area-skill cell attracting (on net) 0.25 additional residents. This appears to conflict

with my own longitudinal estimates in column 5 of Table 9 in the main text. In this

appendix, I attempt to reconcile my results with his. It appears the divergence of our

estimates is mostly explained by the choice of right hand side controls and the sample of

geographical areas.

I begin my attempting to replicate Card’s results. In line with his paper, I study

variation across the 175 largest MSAs in the 5 percent census extract of 1990.44 The

sample is restricted to individuals aged 16 to 68 with more than one year of potential ex-

perience. In constructing his sample, Card uses all foreign-born individuals in the census

extract and a 25 percent random sample of the native-born. I instead use the full sample

of natives, and this may (at least partly) account for some small discrepancies between

his estimates and my replication. Card delineates six skill groups by probabilistically

assigning individuals into broad occupation categories (laborers and low skilled services;

operative and craft; clerical; sales; managers; professional and technical), conditional

44The 1990 census microdata includes sub-state geographical identifiers known as Public Use
Microdata Areas (PUMAs), and a concordance between PUMAs and MSAs can be found at:
https://usa.ipums.org/usa/volii/puma.shtml. A number of PUMAs straddle MSA boundaries; and fol-
lowing Card, I allocate the population of a given PUMA to an MSA if at least half that PUMA’s
population resides in the MSA.
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on their education and demographic characteristics. This assignment is based on predic-

tions from a multinomial logit model, estimated separately for native men, native women,

migrant men and migrant women; and I follow the procedure set out in his appendix.

This approach offers the advantage of accounting for any occupational downgrading of

migrants (see e.g. Dustmann, Schoenberg and Stuhler, 2016).

Card estimates a specification very similar to (37), except he uses first order approx-

imations of λ̂I
srt and λ̂F

srt. Specifically:

(

Lsr,1990 − LF
sr,1990

)

− Lsr,1985

Lsr,1985
= δw

0 + δw
1

LF
sr,1990

Lsr,1985
+Xsrδ

w
X + ds + dr + εsr (A49)

where Lsr,1990 is the population of skill group s in area r in the census year (1990); Lsr,1985

is the local population five years previously, based on responses to the 1990 census; and

LF
sr,1990 is the number of foreign migrants in the skill-area cell in 1990 who were living

abroad in 1985. Thus, the dependent variable is the contribution of natives and earlier

(pre-1985) migrants to population growth (net of emigrants from the US, who do not

appear in the sample), and the regressor
LF

sr,1990

Lsr,1985

is the contribution of foreign migration

to that growth. To be more precise, Card actually uses the total (within-cell) population

growth Lsr,1990−Lsr,1985

Lsr,1985

as the dependent variable, but this is a cosmetic difference: it

simply adds a value of 1 to the δw
1 coefficient.45 Xsr is a vector of mean characteristics of

individuals in the (s, r) cell: these consist of mean age, mean age squared, mean years

of schooling and fraction black, separately for both natives and migrants in the cell, and

(for migrants only) mean years in the US. Finally, ds and dr are full sets of skill and area

fixed effects respectively.

The instrument for
LF

sr,1990

Lsr,1985

is a first order approximation of (41) in the main text,

specifically
∑

o
φo

r,1985
LF

os,1990

Lsr,1985

, where φo
r,1985 is the share of origin o migrants who lived in

area r in 1985, and LF
os,1990 is the number of new origin o migrants who arrived in the US

between 1985 and 1990. I use the 17 origin country groups described by Card.

In his baseline OLS specification (with 175 MSAs and observations weighted by cell

population), Card estimates δw
1 as 0.25, with a standard error of 0.04: i.e. a “negative

crowding out” effect.46 And Card’s IV estimate is also 0.25, but with a standard error of

0.05. I record these estimates in column 1 of Table A12.

[Table A12 here]

I attempt to replicate these estimates in column 2 and achieve similar numbers for

Card’s six-group occupation scheme (bottom row). In the remaining rows, I re-estimate

45See Peri and Sparber (2011) for a discussion of this point.
46Using his population growth dependent variable, this comes out as 1.25 - from which I subtract 1.

See final column of Table 4 of Card (2001).
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the model for the four education delineations from Table 9 in the main text: (i) college

graduates / non-graduates; (ii) at least one year of college / no college; (iii) high school

dropouts / all others; (iv) four groups: dropouts, high school graduates, some college

and college graduates. In the fifth row, I also study a classification with two imputed

occupation groups: all those two-digit occupations with less than 40 percent college share

in 1990, versus all those with more than 40 percent.47 I assign individuals probabilistically

to these groups using the same multinomial logit procedure (conditioning on the same

demographic characteristics) as for Card’s six group delineation in the final row. Looking

at column 2, it appears that the choice of skill delineation makes no significant difference

to the estimates. In column 3, I cluster the errors by state: the standard errors are now

larger, but the difference is not dramatic.

Much of the action comes in column 4, when I exclude the mean demographic controls

in Xsr from the right hand side. All the estimates of δw
1 are now negative, and they

are statistically significant for the college graduate, college and two-group occupation

schemes, with IV coefficients of -2.14, -0.45 and -0.47 respectively. Of course, these

controls may be picking up important skill-specific shocks which I have neglected: the

purpose of this exercise is merely to understand how our results can be reconciled.

Column 5 extends the geographical sample to all identifiable MSAs (raising the total

from 175 to 320), and column 6 extends it to cover 49 additional regions consisting of the

non-metro areas in each state48 (so 369 areas in total). The latter modification ensures

the area sample is comprehensive of the US, similarly to the CZs I use in the main text.

There may be good reason to exclude the smaller CZs; but again, the purpose of this

exercise is merely to reconcile our results. These sample extensions make the coefficients

larger (more negative) for all skill delineations, and the IV estimates in column 6 are now

statistically significant for all but the four-group education delineation.

In the final column, I replace the left and right hand side variables with λ̂I
sr,1990 and

λ̂F
sr,1990 respectively, as defined by equations (38) and (39): i.e. log

(

Lsr,1990−LF
sr,1990

Lsr,1985

)

and

log
(

Lsr,1985+LF
sr,1990

Lsr,1985

)

. This makes a negligible difference to the results. The final column

can now be compared to my longitudinal estimates in the main text (column 5 of Table 9):

the results look similar. Just as with the education groups, moving to a finer occupation

classification (i.e. from the penultimate to the final row) yields a smaller δw
1 estimate;

the discussion in Section 6.2 offers an intuition for this result.

47As it happens, the occupational distribution in college share is strongly bipolar, and 40 percent is
the natural dividing line.

48Based on the allocation procedure described above, all of New Jersey is already classified as part of
an MSA. The “49 additional regions” cover the remaining 49 states.
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Tables and figures

Table 1: Average contributions to local population adjustment

OLS IV

Aggregate Foreign Residual Aggregate Foreign Residual

response contribution contribution response contribution contribution

∆lrt λ̂F
rt All: λ̂I

rt Natives: λ̂
I,N
rt ∆lrt λ̂F

rt All: λ̂I
rt Natives: λ̂

I,N
rt

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: No µ̂rt control

∆ log emp 0.857*** 0.050*** 0.838*** 0.781*** 0.748*** 0.237** 0.527*** 0.571***

(0.013) (0.017) (0.024) (0.019) (0.043) (0.093) (0.090) (0.054)

Lagged log ER 0.246*** 0.089* 0.172*** 0.131*** 0.551*** 0.313*** 0.270* 0.258**

(0.020) (0.052) (0.053) (0.040) (0.097) (0.119) (0.150) (0.110)

Panel B: Controlling for µ̂rt

∆ log emp 0.858*** 0.056*** 0.833*** 0.778*** 0.735*** 0.130*** 0.624*** 0.629***

(0.014) (0.011) (0.016) (0.016) (0.040) (0.039) (0.049) (0.042)

Lagged log ER 0.243*** 0.068*** 0.191*** 0.142*** 0.530*** 0.126* 0.441*** 0.360***

(0.019) (0.024) (0.031) (0.030) (0.096) (0.065) (0.123) (0.096)

µ̂rt 0.133*** 0.955*** -0.847*** -0.498*** 0.110* 0.952*** -0.870*** -0.517***

(0.040) (0.085) (0.099) (0.065) (0.060) (0.085) (0.108) (0.082)

Amenity×yr controls Yes Yes Yes Yes Yes Yes Yes Yes

Observations 3,610 3,610 3,610 3,610 3,610 3,610 3,610 3,610

This table reports OLS and IV estimates of β1 and β2 in (33), across 722 CZs and five (decadal) time periods, for different dependent variables:
first, the aggregate change in log population, and then its (approximate) components. All specifications control for year effects and the amenity
variables (interacted with year effects) described in Section 3.4. Panel B controls additionally for the local migrant shift-share, µ̂rt. Errors are
clustered by state, and robust standard errors are reported in parentheses. Each observation is weighted by the lagged local population share. ***
p<0.01, ** p<0.05, * p<0.1.

Table 2: First stage for estimates of average and heterogeneous contributions

First stage for Table 1 First stage for Table 3
∆ log emp Lagged ∆ log emp Lagged ∆ log emp ∆ log emp Lagged Lagged log

log ER log ER * λ̂F
rt log ER ER * λ̂F

rt

(1) (2) (3) (4) (5) (6) (7) (8)

Current Bartik 0.823*** -0.135* 0.839*** -0.134* 0.993*** -0.007 -0.175*** 0.004

(0.130) (0.072) (0.124) (0.069) (0.123) (0.006) (0.065) (0.003)

Current Bartik * µ̂rt -4.543 1.302*** 1.440 -0.556***

(3.110) (0.173) (1.025) (0.074)

Lagged Bartik 0.102 0.369*** 0.122* 0.371*** 0.095* 0.012*** 0.337*** -0.004**

(0.068) (0.061) (0.068) (0.063) (0.056) (0.002) (0.061) (0.002)

Lagged Bartik * µ̂rt 0.928 -0.245** -0.434 0.446***

(2.038) (0.106) (1.416) (0.095)

µ̂rt -0.233** -0.022 -2.429 -0.216* -0.691 -0.900***

(0.113) (0.122) (2.012) (0.111) (1.815) (0.167)

SW F-stat 74.65 55.46 78.91 56.41 111.24 22.84 54.94 15.91

Amenity×yr controls Yes Yes Yes Yes Yes Yes Yes Yes

Amenity×µ̂rt controls No No No No Yes Yes Yes Yes

Observations 3,610 3,610 3,610 3,610 3,610 3,610 3,610 3,610

This table presents first stage estimates corresponding to the IV specifications in Tables 1 and 3. The Sanderson-Windmeijer (2016) F-
statistics account for multiple endogenous variables. All specifications control for year effects, the amenity variables described in Section 3.4
and interactions between the two. The first stages for the Table 3 specifications control additionally for interactions between the amenity
variables and local migrant intensity. I have marked in bold the effect of each instrument on its corresponding endogenous variable, i.e. where
one should theoretically expect to see positive effects. Errors are clustered by state, and robust standard errors are reported in parentheses.
Each observation is weighted by the lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table 3: Heterogeneity in contributions to population adjustment

OLS IV

Aggregate Foreign Residual Aggregate Foreign Residual

response contribution contribution response contribution contribution

∆lrt λ̂F
rt All: λ̂I

rt Natives: λ̂
I,N
rt ∆lrt λ̂F

rt All: λ̂I
rt Natives: λ̂

I,N
rt

(1) (2) (3) (4) (5) (6) (7) (8)

∆ log emp 0.852*** 0.004 0.859*** 0.852*** 0.791*** -0.006 0.809*** 0.825***

(0.015) (0.012) (0.015) (0.018) (0.036) (0.028) (0.046) (0.043)

∆ log emp * µ̂rt 0.169 1.930*** -1.030*** -2.877*** -0.689 4.908*** -5.326*** -8.410***

(0.247) (0.376) (0.379) (0.515) (0.804) (1.180) (1.127) (1.325)

Lagged log ER 0.224*** 0.021 0.211*** 0.211*** 0.560*** 0.007 0.595*** 0.579***

(0.019) (0.012) (0.020) (0.021) (0.114) (0.055) (0.131) (0.126)

Lagged log ER * µ̂rt 1.842*** 1.757*** 0.501 -2.384*** 1.693 7.407*** -6.551*** -11.857***

(0.653) (0.647) (0.535) (0.377) (1.938) (2.203) (2.482) (3.542)

µ̂rt 1.491 1.441 -0.029 -0.428 1.536 6.062* -5.681** -8.042**

(1.118) (1.289) (0.838) (0.708) (2.449) (3.220) (2.594) (3.805)

Amenity×yr controls Yes Yes Yes Yes Yes Yes Yes Yes

Amenity×µ̂rt controls Yes Yes Yes Yes Yes Yes Yes Yes

Observations 3,610 3,610 3,610 3,610 3,610 3,610 3,610 3,610

This table reports OLS and IV estimates of equation (34), across 722 CZs and five (decadal) time periods. As in Table 1, I estimate this equation
for the change in log population and its (approximate) components. All specifications control for year effects, the amenity variables described in
Section in Section 3.4, interactions between the amenity variables and year effects, and (unlike Table 1) interactions between the amenity variables
and local migrant intensity. Errors are clustered by state, and robust standard errors are reported in parentheses. Each observation is weighted by
the lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.

Table 4: Evolution of local employment rates (IV estimates)

All Natives Migrants All Natives Migrants

(1) (2) (3) (4) (5) (6)

∆ log emp 0.252*** 0.251*** 0.167* 0.209*** 0.200*** 0.193**

(0.043) (0.045) (0.098) (0.036) (0.038) (0.089)

∆ log emp * µ̂rt 0.689 1.159 -1.551

(0.804) (0.773) (1.502)

Lagged log ER -0.551*** -0.560*** -0.609*** -0.560*** -0.577*** -0.577**

(0.097) (0.099) (0.216) (0.114) (0.119) (0.253)

Lagged log ER * µ̂rt -1.693 -1.168 -2.405

(1.938) (1.772) (4.192)

µ̂rt -1.536 -1.472 -0.952

(2.449) (2.208) (4.371)

Amenity×yr controls Yes Yes Yes Yes Yes Yes

Amenity×µ̂rt controls No No No Yes Yes Yes

Observations 3,610 3,610 3,599 3,610 3,610 3,599

Columns 1-3 replicate the IV estimate of column 5 of Table 1 (Panel A), but replacing the dependent
variable with changes in log (composition-adjusted) employment rates: separately for all individuals,
natives and migrants. Columns 4-6 do the same for the IV estimate of column 5 of Table 3. The
observation count is a little smaller in columns 3 and 6: I am unable to compute composition-adjusted
migrant employment rates for 11 small CZs in the 1960s (see footnote 18). Errors are clustered by state,
and robust standard errors are reported in parentheses. Each observation is weighted by the lagged local
population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table 5: Estimates of crowding out across CZs

Basic crowding out estimates Cond. on emp Emp response

λ̂I
rt λ̂I

rt λ̂I
rt λ̂I

rt λ̂I
rt λ̂I

rt−1 λ̂I
rt ∆ñrt

(1) (2) (3) (4) (5) (6) (7) (8)

Foreign contrib: λ̂F
rt -0.761*** -1.096*** -1.109*** -0.787*** -0.786*** -0.235 -0.913*** -0.245**

(0.200) (0.130) (0.153) (0.167) (0.184) (0.228) (0.065) (0.102)

∆ log emp 0.743***

(0.043)

Lagged log ER 0.520*** 0.831*** 0.833*** 0.556*** 0.370*

(0.072) (0.207) (0.221) (0.105) (0.191)

Current Bartik 0.646*** 0.677*** 0.679*** 0.524*** 0.421*** -0.071 0.911***

(0.109) (0.099) (0.096) (0.119) (0.161) (0.168) (0.103)

Lagged Bartik 0.290*** 0.287*** 0.907***

(0.060) (0.085) (0.103)

µ̂rt−1 0.016 -0.388*** -0.340*** -0.984***

(0.161) (0.124) (0.116) (0.167)

Specification OLS IV IV IV IV IV IV IV

Instruments - µ̂rt, brt−1 µ̂rt, brt−1 µ̂rt µ̂rt µ̂rt µ̂rt, brt, brt−1 µ̂rt, brt−1

Amenity×yr controls Yes Yes Yes Yes Yes Yes Yes Yes

Year sample 60-10 60-10 60-10 60-10 70-10 70-10 60-10 60-10

Observations 3,610 3,610 3,610 3,610 2,888 2,888 3,610 3,610

Columns 1-6 report variants of the crowding out equation (35). There are (up to) two endogenous variables: the contribution of new migrants

to local population growth, λ̂F
rt, and the lagged log employment rate. The corresponding instruments are the migrant shift-share µ̂rt and the

lagged Bartik brt−1. Columns 5-6 exclude observations from the 1960s, and column 6 replaces the dependent variable with its lag. Column
7 reports estimates of equation (36), which replaces the current Bartik control with the current change in log employment (with the current
Bartik brt deployed instead as a third instrument). Column 8 re-estimates column 2, but replacing the dependent variable with the change
in the log employment stock. All specifications control for year effects and the amenity variables (interacted with year effects) described in
Section 3.4. Errors are clustered by state, and robust standard errors are reported in parentheses. Each observation is weighted by the lagged
local population share. *** p<0.01, ** p<0.05, * p<0.1.

Table 6: First stage for crowding out estimates

Foreign contribution: λ̂F
rt Lagged log ER ∆ log emp

(1) (2) (3) (4) (5) (6)

Current Bartik 0.092*** 0.078*** 0.121*** -0.134* -0.156** 0.839***

(0.025) (0.026) (0.034) (0.069) (0.067) (0.124)
Lagged Bartik 0.063*** 0.064*** 0.160*** 0.371*** 0.373*** 0.122*

(0.019) (0.019) (0.028) (0.063) (0.062) (0.068)
µ̂rt 0.919*** 1.229*** 1.173*** -0.022 0.475*** -0.233**

(0.084) (0.119) (0.105) (0.122) (0.175) (0.113)
µ̂rt−1 -0.399*** -0.377*** -0.640***

(0.056) (0.053) (0.139)

SW F-test: 2 endog vars 126.47 54.88 - 34.70 31.00 -

SW F-test: 3 endog vars 93.68 - - 56.93 - 84.09

Amenity×yr controls Yes Yes Yes Yes Yes Yes

Year sample 60-10 60-10 70-10 60-10 60-10 60-10

Observations 3,610 3,610 2,888 3,610 3,610 3,610

This table reports first stage estimates corresponding to the crowding out specifications in Table 5. I report
Sanderson-Windmeijer F-statistics which account for multiple endogenous variables, both for those Table 5 spe-
cifications with two endogenous variables (i.e. λ̂F

rt and the lagged employment rate) and those with three (as before,
plus the current change in log employment). All specifications control for year effects and the amenity variables
(interacted with year effects) described in Section 3.4. I have marked in bold the effect of each instrument on its
corresponding endogenous variable, i.e. where one should theoretically expect to see positive effects. Errors are
clustered by state, and robust standard errors are reported in parentheses. Each observation is weighted by the
lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table 7: Robustness of IV crowding out effects to controls and decadal sample

Natives and old migrants: λ̂I
rt Natives only: λ̂

I,N
rt

1960s 1970s 1980s 1990s 2000s All years All years

(1) (2) (3) (4) (5) (6) (7)

Year effects 0.273 -0.726 -0.041 -0.943*** -0.538** -0.526** -0.224

(0.944) (0.635) (0.250) (0.225) (0.252) (0.246) (0.172)

+ Current Bartik -0.745 -0.268 -0.455 -0.921*** -0.572** -0.689*** -0.396**

(1.134) (0.466) (0.350) (0.260) (0.251) (0.217) (0.158)

+ Lagged log ER (instrumented) -0.709 -0.238 -0.744* -0.327 -0.564** -0.753*** -0.448**

(1.139) (0.318) (0.441) (0.421) (0.246) (0.239) (0.176)

+ Climate controls -1.967** -2.088*** -0.973*** -1.343*** -0.845*** -1.396*** -0.973***

(0.908) (0.467) (0.302) (0.256) (0.180) (0.192) (0.146)

+ Coastline dummy -2.032** -2.087*** -0.865** -1.119*** -0.637*** -1.263*** -0.846***

(0.947) (0.473) (0.350) (0.251) (0.189) (0.228) (0.172)

+ Log pop density 1900 -1.657*** -1.797*** -0.726*** -1.100*** -0.558*** -1.107*** -0.721***

(0.610) (0.220) (0.201) (0.276) (0.215) (0.256) (0.218)

+ Log distance to closest CZ -1.626** -1.917*** -0.877*** -1.203*** -0.638*** -1.137*** -0.751***

(0.634) (0.197) (0.188) (0.298) (0.236) (0.251) (0.215)

+ Amenity×yr effects -1.626** -1.917*** -0.877*** -1.203*** -0.638*** -1.096*** -0.715***

(0.634) (0.197) (0.188) (0.298) (0.236) (0.130) (0.127)

Observations 722 722 722 722 722 3,610 3,610

This table tests the robustness of my IV crowding out estimate δ1 (in column 2 of Table 5) to the choice of controls and decadal sample.
Moving down the rows of the table, I show how my δ1 estimate changes as progressively more controls are included. All specifications include
the foreign contribution λ̂F

rt (instrumented with the migrant shift-share, µ̂rt) and year effects. The second row controls additionally for a
current Bartik, brt; the third row includes the (endogenous) lagged employment rate (together with its lagged Bartik instrument, brt−1);
and the various amenities are then progressively added - until the final row, which includes the full set of controls I use in Table 5. The
first six columns report estimates of δ1, separately for each decade and for all decades together; and the final column replaces the dependent
variable with the contribution of natives alone, λ̂

I,N
rt . Errors are clustered by state, and robust standard errors are reported in parentheses.

Each observation is weighted by the lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.

Table 8: IV effects of foreign inflows on change in log employment rate

Native Migrant

Current Current Current Current Lagged Current

(1) (2) (3) (4) (5) (6)

Foreign contrib: λ̂F
rt -0.210*** -0.190** -0.350*** -0.399*** -0.022 -0.236***

(0.057) (0.092) (0.075) (0.072) (0.061) (0.055)

Lagged log ER -0.411*** -0.414*** -0.469**

(0.087) (0.091) (0.204)

Current Bartik 0.259*** 0.255*** 0.333*** 0.483*** 0.024 0.192**

(0.036) (0.034) (0.038) (0.051) (0.058) (0.081)

Lagged Bartik -0.144*** -0.098*** 0.069*

(0.024) (0.034) (0.036)

µ̂rt−1 -0.024 0.177** 0.201*** -0.216***

(0.079) (0.076) (0.073) (0.063)

Instruments µ̂rt, brt−1 µ̂rt, brt−1 µ̂rt µ̂rt µ̂rt µ̂rt, brt−1

Amenity×yr controls Yes Yes Yes Yes Yes Yes

Year sample 60-10 60-10 60-10 70-10 70-10 60-10

Observations 3,610 3,610 3,610 2,888 2,888 3,599

This table reports estimates of the crowding out equation (35), with the dependent variable replaced
with the change in the log (composition-adjusted) employment rate - either of natives or migrants. See
the notes under Table 5 for further details about the empirical specification, and see Table 6 for the
first stage estimates. All specifications control for year effects and the amenity variables (interacted
with year effects) described in Section 3.4. The observation count is a little smaller in column 6: I am
unable to compute composition-adjusted migrant employment rates for 11 small CZs in the 1960s (see
footnote 18). Errors are clustered by state, and robust standard errors are reported in parentheses.
Each observation is weighted by the lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table 9: Within-area IV estimates of δw
1

Pooled cross-sections Longitudinal Observations

First stage Full residual Natives First stage Full residual Natives

coefficient contrib: λ̂I
srt only: λ̂

I,N
srt coefficient contrib: λ̂I

srt only: λ̂
I,N
srt

(1) (2) (3) (4) (5) (6) (7)

CG / < CG 0.539*** 1.502*** 1.638*** 0.475*** -3.587** -2.798** 4,332

(0.067) (0.295) (0.369) (0.074) (1.518) (1.244)

Coll / < Coll 0.662*** 1.040*** 1.046*** 0.778*** -1.129*** -0.794*** 4,332

(0.044) (0.132) (0.162) (0.056) (0.094) (0.140)

HSD / > HSD 0.785*** 0.980*** 1.410*** 0.841*** -0.425*** -0.252*** 4,332

(0.031) (0.088) (0.261) (0.039) (0.090) (0.067)

4 edu groups 0.744*** 1.330*** 1.521*** 0.817*** -0.194* -0.041 8,664

(0.035) (0.095) (0.209) (0.038) (0.117) (0.085)

This table reports within-area estimates of δw
1 based on equation (37). The first three columns are based on pooled decadal

cross-sections between 1970 and 2000, and columns 4-6 exploit longitudinal information on changes in residence over 1975-1980,
1985-1990 and 1995-2000. Columns 1 and 4 report the first stage coefficients on the skill-specific migrant shift-share, µ̂srt. And
the remaining columns report IV estimates of δw

1 , both for the full residual contribution (natives and old migrants) and for
natives only. The four rows offer estimates for different education-based skill delineations: (i) college graduates / non-graduates,
(ii) at least one year of college / no college, (iii) high school dropouts / all others, and (iv) four groups: high school dropouts,
high school graduates, some college and college graduates. All specifications control for both CZ-year and skill-year interacted
fixed effects. Errors are clustered by state, and robust standard errors are reported in parentheses. Each observation is weighted
by the lagged cell-specific population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table A1: Robustness of IV contributions to local adjustment: Specification choices

Aggregate Foreign Residual Aggregate Foreign Residual

response contribution contribution response contribution contribution

∆lrt λ̂F
rt All: λ̂I

rt Natives: λ̂
I,N
rt ∆lrt λ̂F

rt All: λ̂I
rt Natives: λ̂

I,N
rt

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Original specification

∆ log emp 0.748*** 0.237** 0.527*** 0.571*** 0.791*** -0.006 0.809*** 0.825***

(0.043) (0.093) (0.090) (0.054) (0.036) (0.028) (0.046) (0.043)

∆ log emp * µ̂rt -0.689 4.908*** -5.326*** -8.410***

(0.804) (1.180) (1.127) (1.325)

Lagged log ER 0.551*** 0.313*** 0.270* 0.258** 0.560*** 0.007 0.595*** 0.579***

(0.097) (0.119) (0.150) (0.110) (0.114) (0.055) (0.131) (0.126)

Lagged log ER * µ̂rt 1.693 7.407*** -6.551*** -11.857***

(1.938) (2.203) (2.482) (3.542)

µ̂rt 1.536 6.062* -5.681** -8.042**

(2.449) (3.220) (2.594) (3.805)

Panel B: Controlling for CZ fixed effects

∆ log emp 0.653*** -0.054** 0.727*** 0.650*** 0.719*** -0.014 0.728*** 0.723***

(0.058) (0.021) (0.059) (0.054) (0.049) (0.029) (0.046) (0.046)

∆ log emp * µ̂rt -1.473* 2.882*** -4.013*** -7.052***

(0.806) (0.309) (0.814) (0.736)

Lagged log ER 1.178*** 0.185 1.033*** 0.852*** 0.997*** 0.356** 0.634** 0.410

(0.329) (0.229) (0.217) (0.245) (0.194) (0.150) (0.279) (0.363)

Lagged log ER * µ̂rt -1.039 7.299*** -9.201*** -15.586***

(2.092) (2.133) (1.920) (2.849)

µ̂rt 3.731 5.729** -3.035 -6.198*

(2.484) (2.546) (2.174) (3.535)

Panel C: Excluding lagged employment rate

∆ log emp 0.870*** 0.306*** 0.587*** 0.628*** 0.855*** 0.000 0.872*** 0.883***

(0.028) (0.076) (0.089) (0.057) (0.032) (0.033) (0.034) (0.030)

∆ log emp * µ̂rt -0.468 3.175*** -3.127*** -4.982***

(0.396) (0.787) (0.643) (0.672)

µ̂rt -0.148 -0.603 0.042 2.459***

(0.708) (0.541) (0.910) (0.680)

Panel D: Raw employment variables

∆ log emp 0.630*** 0.185** 0.457*** 0.499*** 0.680*** 0.013 0.672*** 0.674***

(0.039) (0.085) (0.097) (0.058) (0.034) (0.032) (0.037) (0.038)

∆ log emp * µ̂rt -0.236 4.257*** -3.977*** -6.442***

(0.752) (1.403) (1.306) (1.405)

Lagged log ER 0.388*** 0.217*** 0.193* 0.185** 0.397*** -0.024 0.449*** 0.454***

(0.076) (0.073) (0.115) (0.086) (0.091) (0.043) (0.109) (0.105)

Lagged log ER * µ̂rt 2.328 6.291*** -4.309*** -8.509***

(2.012) (1.718) (1.526) (1.827)

µ̂rt 2.489 5.403 -3.701* -5.378*

(3.449) (3.777) (2.134) (3.048)

Amenity×yr controls Yes Yes Yes Yes Yes Yes Yes Yes

Amenity×µ̂rt controls No No No No Yes Yes Yes Yes

Observations 3,610 3,610 3,610 3,610 3,610 3,610 3,610 3,610

This table replicates the IV estimates from columns 5-8 (Panel A) of Table 1 and columns 5-8 of Table 3, subject to various changes of specification.
Employment variables are composition-adjusted in all specifications except in Panel D. Errors are clustered by state, and robust standard errors
are reported in parentheses. Each observation is weighted by the lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table A2: Robustness of IV contributions to local adjustment: Amenity controls

Aggregate Foreign Residual Aggregate Foreign Residual

response contribution contribution response contribution contribution

∆lrt λ̂F
rt All: λ̂I

rt Natives: λ̂
I,N
rt ∆lrt λ̂F

rt All: λ̂I
rt Natives: λ̂

I,N
rt

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Year effects only

∆ log emp 0.851*** 0.399* 0.468* 0.581*** 0.799*** 0.068 0.741*** 0.813***

(0.052) (0.229) (0.240) (0.092) (0.057) (0.114) (0.158) (0.127)

∆ log emp * µ̂rt -0.616 7.248 -8.208 -11.165

(0.759) (8.017) (9.829) (9.260)

Lagged log ER 0.394*** 0.841** -0.426 -0.048 0.234*** 0.380 -0.138 0.007

(0.086) (0.428) (0.401) (0.185) (0.070) (0.362) (0.452) (0.390)

Lagged log ER * µ̂rt -0.027 11.284 -13.054 -16.914

(1.237) (13.308) (15.582) (15.559)

µ̂rt 0.306 4.477 -4.822 -5.700

(0.430) (4.388) (5.098) (5.111)

Panel B: ... + amenity * year interactions

∆ log emp 0.748*** 0.237** 0.527*** 0.571*** 0.752*** 0.027 0.738*** 0.782***

(0.043) (0.093) (0.090) (0.054) (0.039) (0.054) (0.067) (0.068)

∆ log emp * µ̂rt -0.107 8.972 -9.258* -12.188**

(2.092) (5.796) (4.814) (5.079)

Lagged log ER 0.551*** 0.313*** 0.270* 0.258** 0.487*** -0.172 0.725*** 0.725***

(0.097) (0.119) (0.150) (0.110) (0.110) (0.277) (0.266) (0.256)

Lagged log ER * µ̂rt 2.174 16.061 -15.370* -19.784**

(4.261) (10.327) (8.908) (10.076)

µ̂rt 0.989 6.239* -5.845* -6.888**

(1.478) (3.534) (3.034) (3.460)

Panel C: ... + amenity * µ̂rt interactions

∆ log emp 0.753*** 0.093*** 0.686*** 0.658*** 0.791*** -0.006 0.809*** 0.825***

(0.041) (0.032) (0.051) (0.050) (0.036) (0.028) (0.046) (0.043)

∆ log emp * µ̂rt -0.689 4.908*** -5.326*** -8.410***

(0.804) (1.180) (1.127) (1.325)

Lagged log ER 0.571*** 0.101** 0.509*** 0.416*** 0.560*** 0.007 0.595*** 0.579***

(0.112) (0.049) (0.125) (0.113) (0.114) (0.055) (0.131) (0.126)

Lagged log ER * µ̂rt 1.693 7.407*** -6.551*** -11.857***

(1.938) (2.203) (2.482) (3.542)

µ̂rt 1.536 6.062* -5.681** -8.042**

(2.449) (3.220) (2.594) (3.805)

Observations 3,610 3,610 3,610 3,610 3,610 3,610 3,610 3,610

This table replicates the IV estimates from columns 5-8 (Panel A) of Table 1 and columns 5-8 of Table 3, subject to various combinations of right
hand side controls. Errors are clustered by state, and robust standard errors are reported in parentheses. Each observation is weighted by the
lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table A3: Robustness of IV contributions to local adjustment: Sample and weights

Aggregate Foreign Residual Aggregate Foreign Residual

response contribution contribution response contribution contribution

∆lrt λ̂F
rt All: λ̂I

rt Natives: λ̂
I,N
rt ∆lrt λ̂F

rt All: λ̂I
rt Natives: λ̂

I,N
rt

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Weighted + Excluding observations with µ̂rt > 0.1 (N = 3,544; 88% of pop)

∆ log emp 0.761*** 0.265*** 0.510*** 0.575*** 0.834*** -0.044 0.898*** 0.913***

(0.043) (0.084) (0.085) (0.058) (0.053) (0.028) (0.070) (0.072)

∆ log emp * µ̂rt -3.077 8.488** -12.478* -15.216**

(3.623) (3.714) (6.995) (7.545)

Lagged log ER 0.501*** 0.142 0.406*** 0.313*** 0.540*** -0.036 0.608*** 0.576***

(0.093) (0.116) (0.144) (0.113) (0.105) (0.062) (0.135) (0.139)

Lagged log ER * µ̂rt -0.230 6.510* -7.763 -11.487

(3.367) (3.712) (7.486) (7.667)

µ̂rt -1.157 6.894** -9.904 -10.971

(3.601) (2.921) (6.332) (6.795)

Panel B: Unweighted (N = 3,610; 100% of pop)

∆ log emp 0.759*** 0.098*** 0.677*** 0.686*** 0.780*** 0.016** 0.773*** 0.798***

(0.038) (0.017) (0.042) (0.040) (0.040) (0.007) (0.042) (0.042)

∆ log emp * µ̂rt 1.607* 1.968*** 0.078 -4.457***

(0.854) (0.475) (1.097) (1.132)

Lagged log ER 0.444*** 0.129*** 0.333*** 0.315*** 0.455*** 0.029** 0.443*** 0.444***

(0.067) (0.031) (0.059) (0.060) (0.080) (0.013) (0.082) (0.074)

Lagged log ER * µ̂rt 4.565*** 3.592*** 1.091 -7.071***

(1.708) (0.783) (2.057) (1.908)

µ̂rt -0.157 2.628*** -2.720 -4.598***

(1.682) (0.631) (1.742) (1.415)

Panel C: Unweighted + Excluding CZs with 1960 population of 16-64s < 25,000 (N = 2,425; 98% of pop)

∆ log emp 0.765*** 0.102*** 0.679*** 0.690*** 0.791*** 0.015*** 0.785*** 0.801***

(0.038) (0.019) (0.041) (0.040) (0.042) (0.006) (0.043) (0.042)

∆ log emp * µ̂rt -0.001 1.989*** -1.570 -5.041***

(0.752) (0.501) (1.010) (1.209)

Lagged log ER 0.434*** 0.139*** 0.315*** 0.303*** 0.454*** 0.034*** 0.437*** 0.425***

(0.067) (0.034) (0.066) (0.066) (0.077) (0.013) (0.080) (0.076)

Lagged log ER * µ̂rt 1.699 4.171*** -2.456 -8.771***

(1.496) (0.618) (1.616) (1.478)

µ̂rt 0.949 3.688*** -2.927 -4.789**

(1.944) (0.849) (1.906) (1.994)

Panel D: Unweighted + Excluding CZs with 1960 population of 16-64s < 50,000 (N = 1,675; 93% of pop)

∆ log emp 0.749*** 0.105*** 0.661*** 0.669*** 0.769*** 0.011 0.767*** 0.785***

(0.034) (0.023) (0.038) (0.035) (0.039) (0.008) (0.039) (0.039)

∆ log emp * µ̂rt -0.335 2.257*** -2.143* -5.521***

(0.802) (0.598) (1.094) (1.376)

Lagged log ER 0.427*** 0.143*** 0.303*** 0.308*** 0.442*** 0.033** 0.425*** 0.421***

(0.052) (0.041) (0.051) (0.048) (0.054) (0.014) (0.058) (0.057)

Lagged log ER * µ̂rt 0.875 5.051*** -4.108** -10.391***

(1.999) (0.866) (1.796) (1.791)

µ̂rt 1.089 4.616*** -3.684*** -6.749***

(1.919) (1.463) (1.304) (1.404)

Amenity×yr controls Yes Yes Yes Yes Yes Yes Yes Yes

Amenity×µ̂rt controls No No No No Yes Yes Yes Yes

This table replicates the IV estimates from columns 5-8 (Panel A) of Table 1 and columns 5-8 of Table 3, subject to various weighting choices (i.e.
with or without lagged local population share weights) and sample choices. Errors are clustered by state, and robust standard errors are reported
in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table A4: Average foreign contributions by country/region of origin

Total foreign Mexico Other Latin Europe and Asia Other

contribution America former USSR

(1) (2) (3) (4) (5) (6)

OLS

∆ log emp 0.050*** 0.020** 0.006 0.008*** 0.012* 0.007***

(0.017) (0.009) (0.010) (0.002) (0.007) (0.002)

Lagged log ER 0.089* 0.012 0.033 0.015** 0.020* 0.011*

(0.052) (0.013) (0.037) (0.006) (0.011) (0.006)

IV

∆ log emp 0.237** -0.010 0.127*** 0.042*** 0.045** 0.041***

(0.093) (0.020) (0.047) (0.012) (0.022) (0.013)

Lagged log ER 0.313*** 0.089*** 0.094 0.033** 0.105** 0.009

(0.119) (0.034) (0.065) (0.014) (0.042) (0.014)

% foreign migration 100 26.9 23.8 14.6 26.6 8.1

Amenity×yr controls Yes Yes Yes Yes Yes Yes

Observations 3,610 3,610 3,610 3,610 3,610 3,610

This table breaks down the foreign contributions in columns 2 and 6 (Panel A) of Table 1 into approximate
contributions from origin country groups. For each origin group o, I replace the dependent variable of

equation (33) with λ̂F o
rt ≡ log

(

Lrt−1+LF o

rt

Lrt−1

)

. Otherwise, the specifications are identical to those in Table 1.

Errors are clustered by state, and robust standard errors are reported in parentheses. Each observation is
weighted by the lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table A5: Estimates of crowding out across CZs: Alternative IV strategies

λ̂I
rt λ̂I

rt
∆Lrt−LF

rt

Lrt−1

∆Lrt−LF
rt

Lrt−1
∆Lrt − LF

rt ∆Lrt − LF
rt λ̂I

rt λ̂I
rt

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Weighted estimates

λ̂F
rt -1.096*** -1.393*** -0.631 -1.351***

(0.130) (0.262) (0.611) (0.262)
LF

rt

Lrt−1
-1.090*** -1.077***

(0.143) (0.163)

LF
rt -0.228*** -0.971***

(0.085) (0.273)

Lagged log ER 0.831*** 0.943*** 0.893*** 0.888*** 2×106*** 4×106** 1.269**

(0.207) (0.172) (0.227) (0.203) (7×105) (2×106) (0.496)

Current Bartik 0.677*** 0.737*** 0.791*** 0.788*** 2×105 -2×105 0.615*** 0.580***

(0.099) (0.106) (0.116) (0.124) (3×105) (2×105) (0.086) (0.080)

Lagged Bartik 0.162***

(0.063)

µ̂rt−1 0.078

(0.119)

SW F-stat for foreign contrib 126.47 40.26 116.05 91.63 262.07 92.07 58.33 40.30

SW F-stat for lagged ER 34.70 45.18 34.99 40.63 39.10 49.08 45.51 -

Panel B: Unweighted estimates

λ̂F
rt -0.940*** -1.538*** -2.288*** -2.400***

(0.266) (0.458) (0.448) (0.589)
LF

rt

Lrt−1
-1.005*** -1.210***

(0.285) (0.293)

LF
rt -0.147 -1.186***

(0.151) (0.273)

Lagged log ER 0.578*** 0.664*** 0.667*** 0.697*** 6×105*** 3×105*** 0.654***

(0.183) (0.188) (0.218) (0.227) (2×105) (1×105) (0.247)

Current Bartik 0.604*** 0.650*** 0.679*** 0.696*** 2×105*** -9×103 0.442*** 0.410***

(0.106) (0.115) (0.127) (0.130) (6×104) (3×104) (0.074) (0.070)

Lagged Bartik 0.117***

(0.042)

µ̂rt−1 0.210

(0.166)

SW F-stat for foreign contrib 51.13 50.09 42.80 14.59 121.72 42.95 6.27 5.61

SW F-stat for lagged ER 25.77 32.27 26.03 25.61 30.32 52.55 53.13 -

Instruments µ̂rt, brt−1 µ̂60
rt , brt−1

ΛF
rt

Lrt−1
, brt−1 ΛF

rt, brt−1 ΛF
rt, brt−1 ΛF

rt, brt−1 µ̂rt, brt−1 µ̂rt, brt−1

Amenity×yr controls Yes Yes Yes Yes Yes Yes Yes Yes

CZ fixed effects No No No No No Yes Yes Yes

Observations 3,610 3,610 3,610 3,610 3,610 3,610 3,610 3,610

This table offers alternative estimates of δ1 in equation (35), implementing different IV strategies and variable specifications. Panel A reports
estimates weighted by the lagged population share, and Panel B reports unweighted estimates. Columns 1-5 in each panel do not control for
CZ fixed effects, while columns 6-8 do. The dependent variable in each specification is reported in the field above the column number. The
instruments I use in each specification are reported at the bottom of the table. The Sanderson-Windmeijer (2016) F- statistics account for
multiple endogenous variables. All specifications control for the lagged employment rate (always instrumented with the lagged Bartik brt−1),
the current Bartik brt, year effects and the amenity variables (interacted with year effects) described in Section 3.4. Errors are clustered by
state, and robust standard errors are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table A6: Robustness of IV crowding out effects: Native response

Basic specification

1960s 1970s 1980s 1990s 2000s All years

(1) (2) (3) (4) (5) (6)

Year effects 0.922 -0.695 0.033 -0.678*** 0.159 -0.224

(0.728) (0.520) (0.165) (0.174) (0.153) (0.172)

+ Current Bartik -0.139 -0.362 -0.405 -0.661*** 0.144 -0.396**

(0.891) (0.409) (0.261) (0.208) (0.155) (0.158)

+ Lagged log ER (instrumented) -0.116 -0.336 -0.636* -0.148 0.139 -0.448**

(0.896) (0.291) (0.355) (0.366) (0.151) (0.176)

+ Climate controls -1.193* -1.976*** -0.825*** -0.981*** -0.057 -0.973***

(0.716) (0.403) (0.224) (0.257) (0.141) (0.146)

+ Coastline dummy -1.250* -2.000*** -0.725*** -0.776*** 0.112 -0.846***

(0.736) (0.403) (0.273) (0.256) (0.163) (0.172)

+ Log pop density 1900 -0.942** -1.747*** -0.628*** -0.759*** 0.182 -0.721***

(0.454) (0.189) (0.183) (0.280) (0.186) (0.218)

+ Log distance to closest CZ -0.926* -1.873*** -0.751*** -0.870*** 0.101 -0.751***

(0.476) (0.190) (0.176) (0.302) (0.194) (0.215)

+ Amenities x year effects -0.926* -1.873*** -0.751*** -0.870*** 0.101 -0.715***

(0.476) (0.190) (0.176) (0.302) (0.194) (0.127)

Observations 722 722 722 722 722 3,610

This table replicates the specifications from Table 7 in the main text, except replacing the dependent variable
(the full residual contribution, λ̂I

rt) with the contribution of natives alone, λ̂
I,N
rt . Note that column 6 in this

table is identical to column 7 of Table 7. Errors are clustered by state, and robust standard errors are reported
in parentheses. Each observation is weighted by the lagged local population share. *** p<0.01, ** p<0.05, *
p<0.1.
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Table A7: Contribution of inflows and outflows to crowding out across CZs

OLS IV

Net flow Inflow Outflow Net flows Inflow Outflow

λ̂I5
rt λ̂Ii5

rt λ̂Io5
rt λ̂I5

rt λ̂Ii5
rt λ̂Io5

rt

(1) (2) (3) (4) (5) (6)

Foreign contrib: λ̂F 5
rt -0.500 -0.296 0.147 -1.555*** -1.661*** -0.320

(0.319) (0.385) (0.152) (0.269) (0.388) (0.222)

Log ER lagged 10 yrs 0.199*** 0.162*** -0.016 0.556*** 0.758*** 0.285**

(0.047) (0.051) (0.033) (0.191) (0.179) (0.118)

Current decadal Bartik 0.286** 0.400*** 0.161*** 0.442*** 0.566*** 0.190***

(0.126) (0.115) (0.047) (0.115) (0.120) (0.067)

SW F-stat for foreign contrib - - - 88.92 88.92 88.92

SW F-stat for lagged ER - - - 26.37 26.37 26.37

Observations 2,166 2,166 2,166 2,166 2,166 2,166

This table offers OLS and IV estimates of the 5-year net crowding out effect, based on equation (A45),
and disaggregates these into the (approximate) contributions from internal inflows and outflows. Variable
definitions and data sources are given in Section E.4. The flow data covers the intervals 1965-70, 1975-80,
1985-90 and 1995-2000. The 5-year foreign contribution is instrumented with a 5-year migrant shift-share in
the IV specification, based on settlement patterns five years previously. The log employment rate, lagged ten
years (e.g. measured at 1960 for the 1965-70 flow interval), is instrumented using a lagged decadal Bartik. I
also control for a current decadal Bartik, year effects and the amenity variables (interacted with year effects)
described in Section 3.4. Errors are clustered by state, and robust standard errors are reported in parentheses.
Each observation is weighted by the 5-year lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.

Table A8: State-level estimates of crowding out

OLS and IV First stage for foreign contrib

λ̂I
rt λ̂I

rt λ̂I
rt λ̂I

rt λ̂I
rt−1 λ̂F

rt λ̂F
rt λ̂F

rt

(1) (2) (3) (4) (5) (6) (7) (8)

Foreign contrib: λ̂F
rt -0.672** -1.294*** -0.949** -1.027** 0.804**

(0.251) (0.345) (0.379) (0.440) (0.324)

Current Bartik -0.024 0.204 0.136 0.090 -0.576* 0.097** 0.066 0.172**

(0.236) (0.236) (0.239) (0.359) (0.300) (0.037) (0.043) (0.069)

Lagged Bartik 0.185** 0.307*** 0.300*** 0.156 0.384** 0.063 0.076 0.165**

(0.088) (0.107) (0.105) (0.178) (0.152) (0.040) (0.051) (0.066)

µ̂rt 1.069*** 1.403*** 1.287***

(0.068) (0.082) (0.091)

µ̂rt−1 -0.469** -0.198 -2.246*** -0.424*** -0.424***

(0.223) (0.199) (0.320) (0.095) (0.081)

Specification OLS IV IV IV IV - - -

Corresponding IV spec - - - - - Col 2 Col 3 Cols 4-5

Amenity×yr controls Yes Yes Yes Yes Yes Yes Yes Yes

Year sample 60-10 60-10 60-10 70-10 70-10 60-10 60-10 70-10

Observations 245 245 245 196 196 245 245 196

Columns 1-5 report state-level OLS and IV estimates of equation (35), though replacing the lagged employment rate with

the lagged Bartik on the right hand side. In the IV specifications, the foreign contribution λ̂F
rt is instrumented with a migrant

shift-share µ̂rt. Columns 6-8 report the first stage estimates. In addition to the variables reported in the tables, all specifications
control for year effects and all the amenity variables (interacted with year effects) described in Section E.5. The full sample
consists of five decadal observations of 49 geographical units (the 48 states of the continental US plus the District of Columbia)
over five decadal periods. Columns 4-5 (and the corresponding first stage in column 8) omit the 1960-70 period. Errors are
clustered by state, and robust standard errors are reported in parentheses. Each observation is weighted by the lagged state
population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table A9: IV effects of foreign inflows by education

All College Non- Postgrad Undergrad Some High-school High-school

individuals graduates graduates degree degree college graduates dropouts

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Population

∆ log pop -0.061 -0.261* -0.145 -0.338 -0.146 -0.805*** -0.368* 0.968***

(0.122) (0.159) (0.135) (0.240) (0.142) (0.270) (0.223) (0.158)

Foreign contrib 1 0.816*** 1.033*** 0.721*** 0.896*** 0.673*** 0.930*** 1.446***

(0.041) (0.011) (0.059) (0.049) (0.035) (0.027) (0.063)

Residual contrib -1.096*** -0.977*** -1.274*** -1.022*** -0.877*** -1.444*** -1.334*** -0.924***

(0.130) (0.184) (0.136) (0.272) (0.147) (0.257) (0.235) (0.154)

Panel B: Employment rates (raw)

∆ log native ER -0.222*** -0.023 -0.357*** 0.019 -0.033 -0.248*** -0.213*** -1.006***

(0.058) (0.020) (0.070) (0.015) (0.034) (0.059) (0.057) (0.122)

∆ log migrant ER -0.202*** -0.110** -0.255*** -0.085 -0.096 -0.339*** -0.293** -0.322***

(0.065) (0.047) (0.076) (0.063) (0.097) (0.106) (0.120) (0.122)

Panel C: Wages (residualized)

∆ log native wages 0.019 0.167** -0.040 0.195*** 0.162* -0.073 -0.034 -0.138

(0.124) (0.077) (0.130) (0.064) (0.091) (0.093) (0.116) (0.139)

∆ log migrant wages -0.032 0.185 -0.112 0.030 0.348 0.005 -0.103* -0.247*

(0.086) (0.183) (0.100) (0.197) (0.221) (0.189) (0.060) (0.130)

Panel D: Housing rents (residualized)

∆ log rents 0.105 0.259** 0.020 0.288** 0.242** 0.103 0.089 -0.050

(0.114) (0.109) (0.109) (0.113) (0.112) (0.113) (0.110) (0.209)

∆ log rents: natives 0.145 0.318*** 0.041 0.322*** 0.315*** 0.132 0.064 -0.503**

(0.114) (0.109) (0.109) (0.111) (0.118) (0.115) (0.090) (0.243)

∆ log rents: migrants 0.288*** 0.292*** 0.217** 0.356*** 0.194* 0.203* 0.258** 0.208

(0.102) (0.105) (0.107) (0.136) (0.106) (0.107) (0.111) (0.241)

Panel E: Housing prices (residualized)

∆ log prices 0.319 0.625** 0.321 0.648** 0.603** 0.572** 0.421 0.576*

(0.284) (0.278) (0.291) (0.283) (0.279) (0.288) (0.287) (0.299)

∆ log prices: natives 0.373 0.687** 0.350 0.717*** 0.652** 0.586** 0.413 0.620

(0.278) (0.273) (0.289) (0.274) (0.279) (0.293) (0.276) (0.475)

∆ log prices: migrants 0.428 0.648** 0.423 0.673** 0.575** 0.569** 0.504* 0.574

(0.289) (0.269) (0.298) (0.264) (0.265) (0.281) (0.292) (0.405)

This table reports IV estimates of δ1s in (A46), i.e. the coefficient on CZ-level foreign inflows λ̂F
rt (instrumented with the migrant shift-share),

estimated for a range of outcomes - both for the full sample and separately by education group. See Appendix F for a description of the
various outcomes. All specifications include 3,610 observations (722 CZs over five decadal periods) with the exception of some migrant-specific
outcomes: in some small CZs, the sample of some census extracts does not include migrants in all education cells. The right hand side of
the estimating equation is identical to that of column 2 (Panel A) of Table 5. All specifications control for a second endogenous variable: the
lagged log employment rate, instrumented with the lagged Bartik. I also control for the current Bartik, year effects and the amenity variables
(interacted with year effects) described in Section 3.4. Errors are clustered by state, and robust standard errors are reported in parentheses.
Each observation is weighted by the lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table A10: Within-area IV estimates of δw
1 : Cohort effects

CZs: Pooled cross-sections States: Pooled cross-sections Observations

First stage Full residual Natives First stage Natives Natives CZs States

coefficient contrib: λ̂I
srt only: λ̂

I,N
srt coefficient only: λ̂

I,N
srt only: λ̂

I,N
BP srt

(1) (2) (3) (4) (5) (6) (7) (8)

CG / < CG 0.539*** 1.502*** 1.638*** 0.596*** 1.618** 2.245*** 4,332 294

(0.067) (0.295) (0.369) (0.102) (0.663) (0.423)

Coll / < Coll 0.662*** 1.040*** 1.046*** 0.820*** 1.212*** 2.272*** 4,332 294

(0.044) (0.132) (0.162) (0.047) (0.146) (0.206)

HSD / > HSD 0.785*** 0.980*** 1.410*** 0.970*** 1.435*** 1.620*** 4,332 294

(0.031) (0.088) (0.261) (0.033) (0.344) (0.248)

4 edu groups 0.744*** 1.330*** 1.521*** 0.932*** 1.484*** 1.768*** 8,664 588

(0.035) (0.095) (0.209) (0.032) (0.246) (0.195)

This table explores the presence of cohort effects in the pooled cross-section IV estimates of δw
1 in equation (37), using a range of

education-based skill delineations. As a reference, the first three columns reproduce the CZ-level pooled cross-section estimates
of δw

1 from Table 9 in the main text, based on the three decadal periods between 1970 and 2000. Columns 4 reproduces the
first stage estimates using state-level data (more specifically the 48 states of the continental US plus the District of Columbia).

Column 5 estimates the IV effect of skill-specific foreign inflows λ̂F
rt on the native contribution to skill s population growth in

state r: i.e. the state-level version of column 3. Column 6 replaces the dependent variable with the contribution of natives to
skill-specific population growth among those born (rather than residing) in state r. All specifications control for both area-year
and skill-year interacted fixed effects. Errors are clustered by state, and robust standard errors are reported in parentheses. Each
observation is weighted by the lagged cell-specific population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table A11: Reconciliation with IV population responses from Cadena and Kovak (2016)

All Natives Mexican Other All Natives Mexican Other

migrants migrants migrants migrants

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Cadena and Kovak’s Panel A, Table 4

W/i-industry shock: group-specific 0.223 0.007 0.992** -0.675** 0.527*** 0.303** 1.103* -0.602

(0.166) (0.090) (0.468) (0.278) (0.168) (0.126) (0.590) (0.496)

Panel B: As above, but replace IndShockgr with ∆ngr

∆ log emp: group-specific 0.301* 0.013 0.771*** 1.413*** 0.540*** 0.366*** 0.839*** 0.957**

(0.170) (0.159) (0.104) (0.356) (0.097) (0.093) (0.128) (0.378)

Panel C: Control for dynamics

∆ log emp: group-specific 0.654*** 0.871** 0.380 1.470*** 0.598*** 0.698 0.930*** 0.798***

(0.199) (0.441) (0.413) (0.552) (0.099) (0.503) (0.266) (0.248)

Log ER in 2006: group-specific 0.680** 0.745*** -2.429 -0.519 0.235 0.826 0.623 -0.669

(0.305) (0.284) (2.651) (2.753) (0.304) (0.969) (2.257) (1.017)

Panel D: First stage for ∆ log emp in Panel C specification

Bartik 2006-10 2.928*** 1.789** 7.805*** -3.342* 2.751*** 2.789*** 4.799** -5.963**

(0.763) (0.734) (1.661) (1.814) (0.764) (0.796) (2.150) (2.363)

Bartik 2000-06 0.223 0.558 -2.013* 1.387 0.494 0.002 0.270 3.671**

(0.575) (0.548) (1.208) (1.337) (0.690) (0.625) (1.444) (1.629)

Panel E: First stage for log ER in 2006 in Panel C specification

Bartik 2006-10 -2.777*** -3.936*** -1.075** -0.643 -1.927** -1.901** -0.937 -0.322

(0.625) (1.352) (0.501) (0.812) (0.753) (0.940) (0.703) (0.812)

Bartik 2000-06 1.402*** 1.507*** 0.029 0.506 1.060* 0.708 0.246 0.704

(0.485) (0.513) (0.303) (0.697) (0.564) (0.756) (0.435) (0.712)

SW F-stats for Panel C

∆ log emp 5.30 5.54 1.05 0.62 10.48 0.77 0.71 2.72

Log ER in 2006 4.94 5.42 0.97 0.32 3.33 0.66 0.57 1.44

Amenity controls No No No No Yes Yes Yes Yes

Observations 94 94 94 94 94 94 94 94

This table offers a reconciliation with Panel A of Cadena and Kovak’s (2016) Table 4. The reported coefficients are estimates of ω1 in
various specifications of equation (A47). All estimates correspond to men with no college education. Throughout, I use Cadena and Kovak’s
sample of 94 MSAs over the period 2006-10. Columns 1-4 of Panel A reproduce Cadena and Kovak’s own estimates of ω1g, instrumenting
the within-industry shock with a Bartik shift-share. Panel B replaces the within-industry shock with the overall change in employment, but
retaining the same instrument. Panel C controls additionally for the lagged employment rate in 2006, which I instrument with a lagged
Bartik shift-share (predicting employment changes in the period 2000-6). Panels D and E report the first stage estimates (for the two
endogenous variables) for the dynamic specification (i.e. with the lagged employment rate). The associated Sanderson-Windmeijer (2016)
F-statistics account for multiple endogenous variables. In line with Cadena and Kovak, all specifications control for the Mexican population
share in 2000 and indicators for MSAs in states that enacted anti-migrant employment legislation. Columns 5-8 control additionally for the
local amenity effects described in Section 3.4 in the main text (using population allocations to map CZ data to MSAs): climate, coastline,
historical population and isolation. *** p<0.01, ** p<0.05, * p<0.1.
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Table A12: Reconciliation with 1985-1990 within-area estimates from Card (2001)

Card (2001): Replication ... with errors ... excluding ... with ... with ... replacing LHS var

175 MSAs, clustered demog remaining full area with λ̂I
sr,1990, and

weighted by state controls MSAs sample RHS withλ̂F
sr,1990

(1) (2) (3) (4) (5) (6) (7)

Panel A: OLS

CG / < CG - -0.153 -0.153 -1.948*** -3.270*** -3.595*** -3.878***

(0.441) (0.572) (0.549) (1.124) (1.099) (1.145)

Coll / < Coll - 0.212 0.212 -0.346*** -0.393*** -0.642*** -0.725***

(0.172) (0.248) (0.111) (0.101) (0.143) (0.150)

HSD / > HSD - 0.118 0.118 -0.084 -0.105 -0.259*** -0.291***

(0.101) (0.161) (0.090) (0.088) (0.095) (0.102)

4 edu groups - 0.162 0.162* -0.117 -0.191** -0.349*** -0.409***

(0.103) (0.097) (0.076) (0.096) (0.129) (0.144)

2 occup groups - 0.106 0.106 -0.486*** -0.801*** -0.942*** -1.036***

(0.185) (0.248) (0.145) (0.244) (0.287) (0.299)

6 occup groups 0.25*** 0.214*** 0.214** -0.071 -0.181*** -0.230*** -0.267***

(0.04) (0.045) (0.098) (0.046) (0.055) (0.067) (0.072)

Panel B: IV

CG / < CG - 0.563 0.563 -2.143*** -1.687* -2.350** -2.615***

(1.280) (2.912) (0.750) (0.867) (0.927) (0.949)

Coll / < Coll - 0.389*** 0.389 -0.449*** -0.499*** -0.747*** -0.846***

(0.144) (0.254) (0.132) (0.121) (0.168) (0.175)

HSD / > HSD - 0.297*** 0.297** -0.059 -0.096 -0.262*** -0.295***

(0.080) (0.133) (0.073) (0.071) (0.080) (0.085)

4 edu groups - 0.484*** 0.484*** 0.004 0.041 -0.136 -0.162*

(0.117) (0.118) (0.077) (0.084) (0.086) (0.090)

2 occup groups - 0.244* 0.244 -0.469*** -0.653*** -0.809*** -0.895***

(0.139) (0.298) (0.100) (0.109) (0.138) (0.141)

6 occup groups 0.25*** 0.255*** 0.255** -0.054 -0.123*** -0.169*** -0.192***

(0.05) (0.045) (0.115) (0.043) (0.044) (0.051) (0.053)

This table offers a reconciliation with Card’s (2001) within-area estimates of geographical crowd-out, based on equation (A49). Card’s
OLS and IV estimates of δw

1 (for his six-group imputed occupation scheme) are presented in column 1. These are taken from Table 4
of his paper, based on the 175 largest MSAs of the 1990 census extract, with observations weighted by cell populations. (Card reports
his estimates as the effect on aggregate population growth within the cell, but I substract one from his numbers for comparability
with my specification; see Peri and Sparber, 2011.) I attempt to replicate his results in column 2. In columns 3, I cluster standard
errors by state. Column 4 excludes the demographic controls from the regression. Column 5 extends the geographical sample to all
identifiable MSAs (raising the total to 320), and column 6 extends it to cover 49 additional regions consisting of the non-metro areas

in each state (so 369 areas in total). Finally, column 7 replaces the left hand side variable with λ̂I
sr,1990 and the right hand side variable

with λ̂F
sr,1990. I present estimates for both Card’s six-group occupation scheme and the other skill delineations described in Appendix

I. *** p<0.01, ** p<0.05, * p<0.1.
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B. Age controls

Figure A1: Effect of years in US on cross-state mobility

This figure plots estimates of the log point difference in cross-state mobility between migrants (with given years in the
US) and natives. Estimates are based on complementary log-log models, controlling for a full set of entry cohort effects
and observation year effects. In addition to these, the model in Panel B controls for a full set of age effects. The sample
consists of individuals aged 16-64 in ACS waves between 2000 and 2016. See Appendix C for further details.
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IV

Figure A2: Graphical illustration of crowding out estimates

This figure presents Frisch-Waugh type plots for the δ1 estimates in columns 1 and 2 of Table 5. See Appendix E.1. To
restrict the range of the x-axis, I have excluded a small number of outlying data points: 9 observations in the OLS panel
and 15 for IV.
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